18 research outputs found

    Applications of New Technologies and New Methods in ZHENG Differentiation

    Get PDF
    With the hope to provide an effective approach for personalized diagnosis and treatment clinically, Traditional Chinese Medicine (TCM) is being paid increasing attention as a complementary and alternative medicine. It performs treatment based on ZHENG (TCM syndrome) differentiation, which could be identified as clinical special phenotypes by symptoms and signs of patients. However, it caused skepticism and criticism because ZHENG classification only depends on observation, knowledge, and clinical experience of TCM practitioners, which is lack of objectivity and repeatability. Scientists have done fruitful researches for its objectivity and standardization. Compared with traditional four diagnostic methods (looking, listening and smelling, asking, and touching), in this paper, the applications of new technologies and new methods on the ZHENG differentiation were systemically reviewed, including acquisition, analysis, and integration of clinical data or information. Furthermore, the characteristics and application range of these technologies and methods were summarized. It will provide reference for further researches

    Deletion of Spinophilin Promotes White Adipocyte Browning

    No full text
    Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach to induce energy expenditure and counteract obesity and its associated complications. Systemic depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this study, we explored the mechanistic insight of SPL action in WAT browning. Gene expression and mitochondria tracker staining showed that visceral white adipose tissue (vWAT) harvested from SPL KO mice had a higher expression of classic browning-related genes, including uncoupling protein 1 (UCP1), Cell death inducing DFFA like effector A (CIDEA) and PR domain containing 16 (PRDM16), as well as a higher mtDNA level compared to vWAT from wild type (WT) control mice. When adipogenesis was induced in pre-adipocytes harvested from KO and WT mice ex vivo using the PPAR-γ agonist rosiglitazone (Rosi), SPL KO cells showed increased browning marker gene expression and mitochondria function compared to cells from WT mice. Increased PPAR-γ protein expression and nucleus retention in vWAT from SPL KO mice after Rosi treatment were also observed. The effect of SPL on vWAT browning was further confirmed in vivo when WT and KO mice were treated with Rosi. As a result, SPL KO mice lost body weight, which was associated with increased expression of browning maker genes in vWAT. In summary, our data demonstrate the critical role of SPL in the regulation of WAT browning

    Genome methylation and regulatory functions for hypoxic adaptation in Tibetan chicken embryos

    No full text
    Tibetan chickens have unique adaptations to the extreme high-altitude environment that they inhabit. Epigenetic DNA methylation affects many biological processes, including hypoxic adaptation; however, the regulatory genes for DNA methylation in hypoxic adaptation remain unknown. In this study, methylated DNA immunoprecipitation with high-throughput sequencing (MeDIP-seq) was used to provide an atlas of the DNA methylomes of the heart tissue of hypoxic highland Tibetan and lowland Chahua chicken embryos. A total of 31.2 gigabases of sequence data were generated from six MeDIP-seq libraries. We identified 1,049 differentially methylated regions (DMRs) and 695 related differentially methylated genes (DMGs) between the two chicken breeds. The DMGs are involved in vascular smooth muscle contraction, VEGF signaling pathway, calcium signaling pathway, and other hypoxia-related pathways. Five candidate genes that had low methylation (EDNRA, EDNRB2, BMPR1B, BMPRII, and ITGA2) might play key regulatory roles in the adaptation to hypoxia in Tibetan chicken embryos. Our study provides significant explanations for the functions of genes and their epigenetic regulation for hypoxic adaptation in Tibetan chickens

    A Novel Cellular Therapy to Treat Pancreatic Pain in Experimental Chronic Pancreatitis Using Human Alpha-1 Antitrypsin Overexpressing Mesenchymal Stromal Cells

    No full text
    Chronic pancreatitis (CP) is characterized by pancreatic inflammation, fibrosis, and abdominal pain that is challenging to treat. Mesenchymal stromal cells (MSCs) overexpressing human alpha-1 antitrypsin (hAAT-MSCs) showed improved mobility and protective functions over native MSCs in nonobese diabetic mice. We investigated whether hAAT-MSCs could mitigate CP and its associated pain using trinitrobenzene sulfonic acid (TNBS)-induced CP mouse models. CP mice were given native human MSCs or hAAT-MSCs (0.5 × 106 cells/mouse, i.v., n = 6–8/group). The index of visceral pain was measured by graduated von Frey filaments. Pancreatic morphology and pancreatic mast cell count were analyzed by morphological stains. Nociceptor transient receptor potential vanilloid 1 (TRPV1) expression in dorsal root ganglia (DRG) was determined by immunohistochemistry. hAAT-MSC-treated CP mice best preserved pancreatic morphology and histology. MSC or hAAT-MSC infusion reduced abdominal pain sensitivities. hAAT-MSC therapy also suppressed TRPV1 expression in DRG and reduced pancreatic mast cell density induced by TNBS. Overall, hAAT-MSCs reduced pain and mitigated pancreatic inflammation in CP equal to MSCs with a trend toward a higher pancreatic weight and better pain relief in the hAAT-MSC group compared to the MSC group. Both MSCs and hAAT-MSCs might be used as a novel therapeutic tool for CP-related pain

    Adipose stem cells from chronic pancreatitis patients improve mouse and human islet survival and function

    No full text
    Abstract Background Chronic pancreatitis has surgical options including total pancreatectomy to control pain. To avoid surgical diabetes, the explanted pancreas can have islets harvested and transplanted. Immediately following total pancreatectomy with islet autotransplantation (TP-IAT), many islet cells die due to isolation and transplantation stresses. The percentage of patients remaining insulin free after TP-IAT is therefore low. We determined whether cotransplantation of adipose-derived mesenchymal stem cells (ASCs) from chronic pancreatitis patients (CP-ASCs) would protect islets after transplantation. Methods In a marginal mass islet transplantation model, islets from C57BL/6 mice were cotransplanted with CP-ASCs into syngeneic streptozotocin-treated diabetic mice. Treatment response was defined by the percentage of recipients reaching normoglycemia, and by the area under the curve for glucose and c-peptide in a glucose tolerance test. Macrophage infiltration, β-cell apoptosis, and islet graft vasculature were measured in transplanted islet grafts by immunohistochemistry. mRNA expression profiling of 84 apoptosis-related genes in islet grafts transplanted alone or with CP-ASCs was measured by the RT2 Profiler™ Apoptosis PCR Array. The impact of insulin-like growth factor-1 (IGF-1) on islet apoptosis was determined in islets stimulated with cytokines (IL-1β and IFN-γ) in the presence and absence of CP-ASC conditioned medium. Results CP-ASC-treated mice were more often normoglycemic compared to mice receiving islets alone. ASC cotransplantation reduced macrophage infiltration, β-cell death, suppressed expression of TNF-α and Bcl-2 modifying factor (BMF), and upregulated expressions of IGF-1 and TNF Receptor Superfamily Member 11b (TNFRSF11B) in islet grafts. Islets cultured in conditioned medium from CP-ASCs showed reduced cell death. This protective effect was diminished when IGF-1 was blocked in the conditioned medium by the anti-IGF-1 antibody. Conclusion Cotransplantation of islets with ASCs from the adipose of chronic pancreatitis patients improved islet survival and islet function after transplantation. The effects are in part mediated by paracrine secretion of IGF-1, suppression of inflammation, and promotion of angiogenesis. ASCs from chronic pancreatitis patients have the potential to be used as a synergistic therapy to enhance the efficacy of islet transplantation following pancreatectomy
    corecore