78 research outputs found

    Observation of CR Anisotropy with ARGO-YBJ

    Get PDF
    The measurement of the anisotropies of cosmic ray arrival direction provides important informations on the propagation mechanisms and on the identification of their sources. In this paper we report the observation of anisotropy regions at different angular scales. In particular, the observation of a possible anisotropy on scales between ∌\sim 10 ∘^{\circ} and ∌\sim 30 ∘^{\circ} suggests the presence of unknown features of the magnetic fields the charged cosmic rays propagate through, as well as potential contributions of nearby sources to the total flux of cosmic rays. Evidence of new weaker few-degree excesses throughout the sky region 195∘≀195^{\circ}\leq R.A. ≀315∘\leq 315^{\circ} is reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich, German

    Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment

    Get PDF
    Cosmic rays are hampered by the Moon and a deficit in its direction is expected (the so-called Moon shadow). The Moon shadow is an important tool to determine the performance of an air shower array. Indeed, the westward displacement of the shadow center, due to the bending effect of the geomagnetic field on the propagation of cosmic rays, allows the setting of the absolute rigidity scale of the primary particles inducing the showers recorded by the detector. In addition, the shape of the shadow permits to determine the detector point spread function, while the position of the deficit at high energies allows the evaluation of its absolute pointing accuracy. In this paper we present the observation of the cosmic ray Moon shadowing effect carried out by the ARGO-YBJ experiment in the multi-TeV energy region with high statistical significance (55 standard deviations). By means of an accurate Monte Carlo simulation of the cosmic rays propagation in the Earth-Moon system, we have studied separately the effect of the geomagnetic field and of the detector point spread function on the observed shadow. The angular resolution as a function of the particle multiplicity and the pointing accuracy have been obtained. The primary energy of detected showers has been estimated by measuring the westward displacement as a function of the particle multiplicity, thus calibrating the relation between shower size and cosmic ray energy. The stability of the detector on a monthly basis has been checked by monitoring the position and the deficit of the Moon shadow. Finally, we have studied with high statistical accuracy the shadowing effect in the ''day/night’’ time looking for possible effect induced by the solar wind

    Highlights from the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment at YangBaJing in Tibet (4300 m a.s.l.) has been taking data with its full layout since October 2007. Here we present a few signiïŹcant results obtained in gamma-ray astronomy and cosmic-ray physics. Emphasis is placed on the analysis of gamma-ray emission from point-like sources (Crab Nebula, MRK 421), on the preliminary limit on the antiproton/proton ïŹ‚ux ratio, on the large-scale cosmic-ray anisotropy and on the proton–air cross-section. The performance of the detector is also discussed, and the perspectives of the experiment are outlined

    Measurement of the antiproton/proton ratio in the few-TeV energy range with ARGO-YBJ

    Full text link
    Cosmic ray antiprotons provide an important probe for the study of cosmic ray propagation in the interstellar space and to investigate the existence of Galactic dark matter. The ARGO-YBJ experiment is observing the Moon shadow with high statistical significance at an energy threshold of a few hundred GeV. Using all the data collected until November 2009, we set two upper limits on the antip/p flux ratio: 5% at an energy of 1.4 TeV and 6% at 5 TeV with a confidence level of 90%. In the few-TeV range the ARGO-YBJ results are the lowest available, useful to constrain models for antiproton production in antimatter domains.Comment: Talk given at the CRIS 2010 Conference, September 2010, Catania - Italy, 6 page

    Cosmic ray shower rate variations detected by the ARGO-YBJ experiment during thunderstorms

    No full text
    The ARGO-YBJ detector, located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China), was a "full coverage" air shower array. The high altitude location and the frequent occurrence of thunderstorms, made ARGO-YBJ suitable to study the effects of atmospheric electric fields (AEF) on secondary cosmic rays. By analyzing the data of the ARGO-YBJ detector recorded during thunderstorms, significant variations of the rate of detected showers have been observed. During 20 thunderstorm episodes in 2012, the variations of the shower rates (both increases and decreases of amplitudes up to a few percent) are found to be correlated to the intensity and polarity of the AEF, and strongly dependent on the primary zenith angle. To understand the observed behavior, Monte Carlo simulations have been performed with CORSIKA and G4argo (a code based on GEANT4). We found that the data are well consistent with simulations, assuming the presence of a uniform electric field in a layer of thickness of 500 m in the atmosphere above the observation level. Due to the AEF accelerates/decelerates and deflects the secondary charged particles (mainly electrons and positrons) according to their charge, modifying the number and position of particles with energy exceeding the detector threshold. For the differences in electron and positron flux, spectrum, and lateral distribution, the AEF has an asymmetric effect on the shower particles, producing significant variations of the particle pattern on the ground, and, consequently, on the rate of detected showers, consistent with observations

    Calibration of the RPC charge readout in the ARGO-YBJ experiment with the iso-gradient method

    No full text
    The ARGO-YBJ experiment is a full coverage at of Resistive Plate Chambers (RPCs) with an active area of 5800 m(2). In order to eliminate the response difference of the charge readout horn the RPCs, a calibration procedure is carried out with the iso-gradient method. This method also allows the extension of the absolute calibration with the muon telescope including scintillation detectors to all the RPCs in the array. The overall systematic uncertainty in measurements of the number of particles by the RPCs is 10.7%. In general, the method gives results consistent with those from a totally different approach also used in the experiment. (C) 2015 Elsevier B.V. All rights reserved
    • 

    corecore