2,622 research outputs found

    Equilibrium vortex formation in ultrarapidly rotating two-component Bose-Einstein condensates

    Full text link
    Equilibrium vortex formation in rotating binary Bose gases with a rotating frequency higher than the harmonic trapping frequency is investigated theoretically. We consider the system being evaporatively cooled to form condensates and a combined numerical scheme is applied to ensure the binary system being in an authentic equilibrium state. To keep the system stable against the large centrifugal force of ultrafast rotation, a quartic trapping potential is added to the existing harmonic part. Using the Thomas-Fermi approximation, a critical rotating frequency \Omega_c is derived, which characterizes the structure with or without a central density hole. Vortex structures are studied in detail with rotation frequency both above and below ?\Omega_c and with respect to the miscible, symmetrically separated, and asymmetrically separated phases in their nonrotating ground-state counterparts.Comment: 7 pages, 7 figure

    Post density functional theoretical studies of highly polar semiconductive Pb(Ti1−x_{1-x}Nix_{x})O3−x_{3-x} solid solutions: The effects of cation arrangement on band gap

    Full text link
    We use a combination of conventional density functional theory (DFT) and post-DFT methods, including the local density approximation plus Hubbard UU (LDA+UU), PBE0, and self-consistent GWGW to study the electronic properties of Ni-substituted PbTiO3_{3} (Ni-PTO) solid solutions. We find that LDA calculations yield unreasonable band structures, especially for Ni-PTO solid solutions that contain an uninterrupted NiO2_{2} layer. Accurate treatment of localized states in transition-metal oxides like Ni-PTO requires post-DFT methods. BB-site Ni/Ti cation ordering is also investigated. The BB-site cation arrangement alters the bonding between Ni and O, and therefore strongly affects the band gap (EgE_{\rm g}) of Ni-PTO. We predict that Ni-PTO solid solutions should have a direct band gap in the visible light energy range, with polarization similar to the parent PbTiO3_{3}. This combination of properties make Ni-PTO solid solutions promising candidate materials for solar energy conversion devices.Comment: 19 pages, 6 figure

    Existence of Mild Solutions for Fractional Nonlocal Evolution Equations With Delay in Partially Ordered Banach Spaces

    Get PDF
    This paper deals with the existence of mild solutions for the abstract fractional nonlocal evolution equations with noncompact semigroup in partially ordered Banach spaces. Under some mixed conditions, a group of sufficient conditions for the existence of abstract fractional nonlocal evolution equations are obtained by using a Krasnoselskii type fixed point theorem. The results we obtained are a generalization and continuation of the recent results on this issue. At the end, an example is given to illustrate the applicability of abstract result

    Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation

    Get PDF
    Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.Comment: 34 pages, 24 figure

    Bio-material polylactic acid/poly(butylene adipate-co-terephthalate) blend developed for extrusion- based additive manufacturing

    Get PDF
    Bio-material polylactic acid and poly(butylene adipate-co-terephthalate) were blended to achieve increased ductility of the blend. Cloisite was added to improve the stiffness of the blend. The blends were made into filament suitable for extrusion-based additive manufacturing. Melt flow index of the filament and mechanical properties of the printed bars were tested. Preliminary results showed that the melt flow index increases significantly with cloisite and the modulus of polylactic acid/poly(butylene adipate-co-terephthalate) improved slightly. The notched impact strength of the blend increased with increasing content of cloisite, and it increased significantly after annealing, especially for blends without cloisite

    Locked Temporary Vascular Shunt for Wartime Vascular Injuries

    Get PDF
    IntroductionTo reduce the ischaemia time of injured limbs in wartime, temporary vascular shunts (TVS) are commonly used. However, TVS are stabilized at the ends of the injured vessels using manual suture ties, the risk of dislodgement is high, and tightening manual suture ties is too time consuming.Technical summaryLocked temporary vascular shunts (LTVS) were designed, and each was composed of a silicone tube with a threaded outer surface and smooth inner surface in addition to two nylon buckle switches. The buckle switches were used to stabilize the silicone tube of the LTVS with respect to the vessel walls. This job was performed with two manual suture ties with the current TVS. The mean bursting pressure value of the veins shunted with the LTVS was 114.3% higher than that of the veins shunted with the TVS (0.045 ± 0.008 MPa vs. 0.021 ± 0.012 MPa; p = .00). Although the mean shunting time of the LTVS was reduced by 60.4% compared with that of the TVS (138.89 ± 18.22 seconds vs. 350.48 ± 52.20 seconds; p = .00), there was no significant difference in the patency times between the two types of devices (8.20 ± 9.01 hour vs. 8.40 ± 8.85 hour; p = .98).ConclusionThe LTVS, which was designed to treat wartime vascular injuries, might be safer and more efficient than the current TVS
    • …
    corecore