6 research outputs found

    Computed tomographic assessment of lung weights in trauma patients with early posttraumatic lung dysfunction

    Get PDF
    Introduction: Quantitative computed tomography (qCT)-based assessment of total lung weight (M(lung)) has the potential to differentiate atelectasis from consolidation and could thus provide valuable information for managing trauma patients fulfilling commonly used criteria for acute lung injury (ALI). We hypothesized that qCT would identify atelectasis as a frequent mimic of early posttraumatic ALI. Methods: In this prospective observational study, M(lung) was calculated by qCT in 78 mechanically ventilated trauma patients fulfilling the ALI criteria at admission. A reference interval for M(lung) was derived from 74 trauma patients with morphologically and functionally normal lungs (reference). Results are given as medians with interquartile ranges. Results: The ratio of arterial partial pressure of oxygen to the fraction of inspired oxygen was 560 (506 to 616) mmHg in reference patients and 169 (95 to 240) mmHg in ALI patients. The median reference M(lung) value was 885 (771 to 973) g, and the reference interval for M(lung) was 584 to 1164 g, which matched that of previous reports. Despite the significantly greater median M(lung) value (1088 (862 to 1,342) g) in the ALI group, 46 (59%) ALI patients had M(lung) values within the reference interval and thus most likely had atelectasis. In only 17 patients (22%), Mlung was increased to the range previously reported for ALI patients and compatible with lung consolidation. Statistically significant differences between atelectasis and consolidation patients were found for age, Lung Injury Score, Glasgow Coma Scale score, total lung volume, mass of the nonaerated lung compartment, ventilator-free days and intensive care unit-free days. Conclusions: Atelectasis is a frequent cause of early posttraumatic lung dysfunction. Differentiation between atelectasis and consolidation from other causes of lung damage by using qCT may help to identify patients who could benefit from management strategies such as damage control surgery and lung-protective mechanical ventilation that focus on the prevention of pulmonary complications.Leipzig University Hospita

    Detection of posttraumatic pneumothorax using electrical impedance tomography-An observer-blinded study in pigs with blunt chest trauma.

    Get PDF
    INTRODUCTION:Posttraumatic pneumothorax (PTX) is often overseen in anteroposterior chest X-ray. Chest sonography and Electrical Impedance Tomography (EIT) can both be used at the bedside and may provide complementary information. We evaluated the performance of EIT for diagnosing posttraumatic PTX in a pig model. METHODS:This study used images from an existing database of images acquired from 17 mechanically ventilated pigs, which had sustained standardized blunt chest trauma and had undergone repeated thoracic CT and EIT. 100 corresponding EIT/CT datasets were randomly chosen from the database and anonymized. Two independent and blinded observers analyzed the EIT data for presence and location of PTX. Analysis of the corresponding CTs by a radiologist served as reference. RESULTS:87/100 cases had at least one PTX detected by CT. Fourty-two cases showed a PTX > 20% of the sternovertebral diameter (PTXtrans20), whereas 52/100 PTX showed a PTX>3 cm in the craniocaudal diameter (PTXcc3), with 20 cases showing both a PTXtranscc and a PTXcc3. We found a very low agreement between both EIT observers considering the classification overall PTX/noPTX (κ = 0.09, p = 0.183). For PTXtrans20, sensitivity was 59% for observer 1 and 17% for observer 2, with a specificity of 48% and 50%, respectively. For PTXcc3, observer 1 showed a sensitivity of 60% with a specificity of 51% while the sensitivity of observer 2 was 17%, with a specificity of 89%. By programming a semi-automatized detection algorithm, we significantly improved the detection rate of PTXcc3, with a sensitivity of 73% and a specificity of 70%. However, detection of PTXtranscc was not improved. CONCLUSION:In our analysis, visual interpretation of EIT without specific image processing or comparison with baseline data did not allow clinically useful diagnosis of posttraumatic PTX. Multimodal imaging approaches, technical improvements and image postprocessing algorithms might improve the performance of EIT for diagnosing PTX in the future

    Hemoadsorption in the critically ill—Final results of the International CytoSorb Registry

    No full text
    The aim of the current paper is to summarize the results of the International CytoSorb Registry. Data were collected on patients of the intensive care unit. The primary endpoint was actual in-hospital mortality compared to the mortality predicted by APACHE II score. The main secondary endpoints were SOFA scores, inflammatory biomarkers and overall evaluation of the general condition. 1434 patients were enrolled. Indications for hemoadsorption were sepsis/septic shock (N = 936); cardiac surgery perioperatively (N = 172); cardiac surgery postoperatively (N = 67) and "other" reasons (N = 259). APACHE-II-predicted mortality was 62.0 +/- 24.8%, whereas observed hospital mortality was 50.1%. Overall SOFA scores did not change but cardiovascular and pulmonary SOFA scores decreased by 0.4 [-0.5;-0.3] and -0.2 [-0.3;-0.2] points, respectively. Serum procalcitonin and C-reactive protein levels showed significant reduction: -15.4 [-19.6;-11.17] ng/mL; -17,52 [-70;44] mg/L, respectively. In the septic cohort PCT and IL-6 also showed significant reduction: -18.2 [-23.6;-12.8] ng/mL; -2.6 [-3.0;-2.2] pg/mL, respectively. Evaluation of the overall effect: minimal improvement (22%), much improvement (22%) and very much improvement (10%), no change observed (30%) and deterioration (4%). There was no significant difference in the primary outcome of mortality, but there were improvements in cardiovascular and pulmonary SOFA scores and a reduction in PCT, CRP and IL-6 levels

    Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples

    No full text
    10 pages, 6 figures, 3 tables.-- PMID: 18371770 [PubMed].-- Available online Aug 30, 2007.Application of multivariate curve resolution alternating least squares (MCR-ALS), for the resolution and quantification of different analytes in different type of pharmaceutical and agricultural samples is shown. In particular, MCR-ALS is applied first to the UV spectrophotometric quantitative analysis of mixtures of commercial steroid drugs, and second to the near-infrared (NIR) spectrophotometric quantitative analysis of humidity and protein contents in forage cereal samples. Quantitative results obtained by MCR-ALS are compared to those obtained using the well established partial least squares regression (PLSR) multivariate calibration method.Peer reviewe
    corecore