73 research outputs found

    Introduction to determinantal point processes from a quantum probability viewpoint

    Full text link
    Determinantal point processes on a measure space X whose kernels represent trace class Hermitian operators on L^2(X) are associated to "quasifree" density operators on the Fock space over L^2(X).Comment: Contributed to the proceedings of the 26th Conference on Quantum Probability and Infinite Dimensional Analysi

    Convergence of continuous-time quantum walks on the line

    Full text link
    The position density of a "particle" performing a continuous-time quantum walk on the integer lattice, viewed on length scales inversely proportional to the time t, converges (as t tends to infinity) to a probability distribution that depends on the initial state of the particle. This convergence behavior has recently been demonstrated for the simplest continuous-time random walk [see quant-ph/0408140]. In this brief report, we use a different technique to establish the same convergence for a very large class of continuous-time quantum walks, and we identify the limit distribution in the general case.Comment: Version to appear in Phys. Rev.

    Strongly separated pairs of core electrons in computed ground states of small molecules

    Get PDF
    We have performed full configuration interaction computations of the ground states of the molecules Be, BeH_2, Li, LiH, B, and BH and verified that the core electrons constitute "separated electron pairs." These separated pairs of core electrons have nontrivial structure; the core pair does not simply occupy a single spatial orbital. Our method of establishing the presence of separated electron pairs is direct and conclusive. We do not fit a separated pair model; we work with the wavefunctions of interest directly. To establish that a given group of spin-orbitals contains a quasi-separated pair, we verify by direct computation that the quantum state of the electrons that occupy those spin-orbitals is nearly a pure 2-electron state.Comment: To appear in Computational and Theoretical Chemistr

    Properties of nonfreeness: an entropy measure of electron correlation

    Full text link
    "Nonfreeness" is the (negative of the) difference between the von Neumann entropies of a given many-fermion state and the free state that has the same 1-particle statistics. It also equals the relative entropy of the two states in question, i.e., it is the entropy of the given state relative to the corresponding free state. The nonfreeness of a pure state is the same as its "particle-hole symmetric correlation entropy", a variant of an established measure of electron correlation. But nonfreeness is also defined for mixed states, and this allows one to compare the nonfreeness of subsystems to the nonfreeness of the whole. Nonfreeness of a part does not exceed that in the whole; nonfreeness is additive over independent subsystems; and nonfreeness is superadditive over subsystems that are independent on the 1-particle level.Comment: 20 pages. Submitted to Phys. Rev.
    corecore