research

Convergence of continuous-time quantum walks on the line

Abstract

The position density of a "particle" performing a continuous-time quantum walk on the integer lattice, viewed on length scales inversely proportional to the time t, converges (as t tends to infinity) to a probability distribution that depends on the initial state of the particle. This convergence behavior has recently been demonstrated for the simplest continuous-time random walk [see quant-ph/0408140]. In this brief report, we use a different technique to establish the same convergence for a very large class of continuous-time quantum walks, and we identify the limit distribution in the general case.Comment: Version to appear in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019