The position density of a "particle" performing a continuous-time quantum
walk on the integer lattice, viewed on length scales inversely proportional to
the time t, converges (as t tends to infinity) to a probability distribution
that depends on the initial state of the particle. This convergence behavior
has recently been demonstrated for the simplest continuous-time random walk
[see quant-ph/0408140]. In this brief report, we use a different technique to
establish the same convergence for a very large class of continuous-time
quantum walks, and we identify the limit distribution in the general case.Comment: Version to appear in Phys. Rev.