46 research outputs found

    Constraints on the Emission and Viewing Geometry of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Full text link
    The temporal decay of the flux components of Transient Anomalous X-ray Pulsar XTE J1810-197 following its 2002 outburst presents a unique opportunity to probe the emission geometry of a magnetar. Toward this goal, we model the magnitude of the pulsar's modulation in narrow spectral bands over time. Following previous work, we assume that the post-outburst flux is produced in two distinct thermal components arising from a hot spot and a warm concentric ring. We include general relativistic effects on the blackbody spectra due to gravitational redshift and light bending near the stellar surface, which strongly depend on radius. This affects the model fits for the temperature and size of the emission regions. For the hot spot, the observed temporal and energy-dependent pulse modulation is found to require an anisotropic, pencil-beamed radiation pattern. We are able to constrain an allowed range for the angles that the line-of-sight (psi) and the hot spot pole (xi) make with respect to the spin-axis. Within errors, this is defined by the locus of points in the xi-psi plane that lie along the line (xi+beta(R))(psi+beta(R)) ~ constant, where beta(R) is a function of the radius R of the star. For a canonical value of R=12 km, the viewing parameters range from psi=xi=37 deg to (psi,xi)=(85 deg,15 deg). We discuss our results in the context of magnetar emission models.Comment: 8 pages, accepted to Ap

    Investigating CXOU J163802.6-471358: a new pulsar wind nebula in the Norma region?

    Full text link
    We present the first analysis of the extended source CXOU J163802.6--471358, which was discovered serendipitously during the {\em Chandra} X-ray survey of the Norma region of the Galactic spiral arms. The X-ray source exhibits a cometary appearance with a point source and an extended tail region. The complete source spectrum is fitted well with an absorbed power law model and jointly fitting the {\em Chandra} spectrum of the full source with one obtained from an archived {\em XMM-Newton} observation results in best fit parameters NHN_{\rm H} =1.5−0.5+0.7×1023cm−2=1.5^{+0.7}_{-0.5}\times10^{23} \text{cm}{^{-2}} and Γ=1.1−0.6+0.7\Gamma=1.1^{+0.7}_{-0.6} (90% confidence uncertainties). The unabsorbed luminosity of the full source is then LX∼4.8×1033d102L_X\sim 4.8\times10^{33}d_{10}^2ergs s−1^{-1} with d10=d/10d_{10}=d/10kpc, where a distance of 10 kpc is a lower bound inferred from the large column density. The radio counterpart found for the source using data from the Molonglo Galactic Plane Survey epoch-2 (MGPS-2) shows an elongated tail offset from the X-ray emission. No infrared counterpart was found. The results are consistent with the source being a previously unknown pulsar driving a bow shock through the ambient medium

    Chandra Monitoring of the Candidate Anomalous X-ray Pulsar AX J1845.0-0258

    Get PDF
    The population of clearly identified anomalous X-ray pulsars has recently grown to seven, however, one candidate anomalous X-ray pulsar (AXP) still eludes re-confirmation. Here, we present a set of seven Chandra ACIS-S observations of the transient pulsar AX J1845.0-0258, obtained during 2003. Our observations reveal a faint X-ray point source within the ASCA error circle of AX J1845.0-0258's discovery, which we designate CXOU J184454.6-025653 and tentatively identify as the quiescent AXP. Its spectrum is well described by an absorbed single-component blackbody (kT~2.0 keV) or power law (Gamma~1.0) that is steady in flux on timescales of at least months, but fainter than AX J1845.0-0258 was during its 1993 period of X-ray enhancement by at least a factor of 13. Compared to the outburst spectrum of AX J1845.0-0258, CXOU J184454.6-025653 is considerably harder: if truly the counterpart, then its spectral behaviour is contrary to that seen in the established transient AXP XTE J1810-197, which softened from kT~0.67 keV to ~0.18 keV in quiescence. This unexpected result prompts us to examine the possibility that we have observed an unrelated source, and we discuss the implications for AXPs, and magnetars in general.Comment: 4 pages, 3 figures. To be published in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006, London, UK), eds. D. Page, R. Turolla, & S. Zan

    High-Resolution X-ray Imaging Studies of Neutron Stars, Pulsar Wind Nebulae and Supernova Remnants

    Get PDF
    Supernova remnants serve as nearby laboratories relevant to many areas in Astrophysics, from stellar and galaxy evolution to extreme astrophysics and the formation of the heavy elements in the Universe. The Chandra X-ray mission has enabled a giant leap forward in studying both SNRs and their compact stellar remnants on sub-arcsecond scale. However, such high-resolution imaging studies have been mostly limited to the nearby and/or relatively bright objects. There is no question that we are missing a large population, especially in external galaxies. Within our own Galaxy, we are presented with new fundamental questions related to neutron stars' diversity, kicks, relativistic winds and the way these objects interact with, and impact, their host environments. In this white paper, we highlight some of the breakthroughs to be achieved with future X-ray missions (such as the proposed AXIS probe) equipped with sub-arcsecond imaging resolution and an order of magnitude improvement in sensitivity.Comment: Astro2020 Science White Paper. 9 pages, 2 figure

    ROSAT and ASCA observations of the Crab-Like Supernova Remnant N157B in the Large Magellanic Cloud

    Get PDF
    We report the results of ROSAT and ASCA X-ray observations of the supernova remnant N157B (or 30 Dor B, SNR 0539-69.1) in the Large Magellanic Cloud. For comparison, we also briefly describe the results on SNR 0540-69.3, the only confirmed Crab-like remnant in the Cloud. The X-ray emission from N157B can be decomposed into a bright comet-shaped feature, superimposed on a diffuse emission region of a dimension ∼20\sim 20 pc. The flat and nearly featureless spectrum of the remnant is distinctly different from those of young shell-like remnants, suggesting a predominantly Crab-like nature of N157B. Characterized by a power law with an energy slope ∼1.5\sim 1.5, the spectrum of N157B above ∼2\sim 2 keV is, however, considerably steeper than that of SNR 0540-69.3, which has a slope of ∼1.0\sim 1.0. At lower energies, the spectrum of N157B presents marginal evidence for emission lines, which if real most likely arise in hot gas of the diffuse emission region. The hot gas has a characteristic thermal temperature of 0.4-0.7 keV. No significant periodic signal is detected from N157B in the period range of 3×10−3−20003 \times 10^{-3}-2000 s. The pulsed fraction is ≲9\lesssim 9% (99% confidence) in the 2−72-7 keV range. We discuss the nature of the individual X-ray components. In particular, we suggest that the synchrotron radiation of relativistic particles from a fast-moving (∼103kms−1\sim 10^3 km s^{-1}) pulsar explains the size, morphology, spectrum, and energetics of the comet-shaped X-ray feature. We infer the age of the remnant as ∼5×103\sim 5 \times 10^3 yrs. The lack of radio polarization of the remnant may be due to Faraday dispersion by foreground \ion{H}{2} gas.Comment: To be published in The Astrophysical Journal, 21 pages, plus 11 images in the PS, GIF, or jpeg format. Postscript files of images are available at http://www.astro.nwu.edu/astro/wqd/paper/n157b
    corecore