4,850 research outputs found

    Bound states of PT-symmetric separable potentials

    Full text link
    All of the PT-symmetric potentials that have been studied so far have been local. In this paper nonlocal PT-symmetric separable potentials of the form V(x,y)=iϵ[U(x)U(y)U(x)U(y)]V(x,y)=i\epsilon[U(x)U(y)-U(-x)U(-y)], where U(x)U(x) is real, are examined. Two specific models are examined. In each case it is shown that there is a parametric region of the coupling strength ϵ\epsilon for which the PT symmetry of the Hamiltonian is unbroken and the bound-state energies are real. The critical values of ϵ\epsilon that bound this region are calculated.Comment: 10 pages, 3 figure

    S-Track Stabilization of Heterotic de Sitter Vacua

    Get PDF
    We present a new mechanism, the S-Track, to stabilize the volume modulus S in heterotic M-theory flux compactifications along with the orbifold-size T besides complex structure and vector bundle moduli stabilization. The key dynamical ingredient which makes the volume modulus stabilization possible, is M5-instantons arising from M5-branes wrapping the whole Calabi-Yau slice. These are natural in heterotic M-theory where the warping shrinks the Calabi-Yau volume along S^1/Z_2. Combined with H-flux, open M2-instantons and hidden sector gaugino condensation it leads to a superpotential W which stabilizes S similar like a racetrack but without the need for multi gaugino condensation. Moreover, W contains two competing non-perturbative effects which stabilize T. We analyze the potential and superpotentials to show that it leads to heterotic de Sitter vacua with broken supersymmetry through non-vanishing F-terms.Comment: 16 pages, 2 figures; final PRD versio

    The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources

    Full text link
    This paper studies the three-user finite-field multi-way relay channel, where the users exchange messages via a relay. The messages are arbitrarily correlated, and the finite-field channel is linear and is subject to additive noise of arbitrary distribution. The problem is to determine the minimum achievable source-channel rate, defined as channel uses per source symbol needed for reliable communication. We combine Slepian-Wolf source coding and functional-decode-forward channel coding to obtain the solution for two classes of source and channel combinations. Furthermore, for correlated sources that have their common information equal their mutual information, we propose a new coding scheme to achieve the minimum source-channel rate.Comment: Author's final version (accepted and to appear in IEEE Transactions on Communications

    On codimension two flats in Fermat-type arrangements

    Full text link
    In the present note we study certain arrangements of codimension 22 flats in projective spaces, we call them "Fermat arrangements". We describe algebraic properties of their defining ideals. In particular, we show that they provide counterexamples to an expected containment relation between ordinary and symbolic powers of homogeneous ideals.Comment: 9 page

    Resonator/zero-Qubit architecture for superconducting qubits

    Full text link
    We analyze the performance of the Resonator/zero-Qubit (RezQu) architecture in which the qubits are complemented with memory resonators and coupled via a resonator bus. Separating the stored information from the rest of the processing circuit by at least two coupling steps and the zero qubit state results in a significant increase of the ON/OFF ratio and the reduction of the idling error. Assuming no decoherence, we calculate such idling error, as well as the errors for the MOVE operation and tunneling measurement, and show that the RezQu architecture can provide high fidelity performance required for medium-scale quantum information processing.Comment: 11 pages, 5 figure

    Innovation und Technologischer Wandel in Österreich

    Get PDF
    Series: Discussion Papers of the Institute for Economic Geography and GIScienc

    Cantilever-based Resonant Gas Sensors with Integrated Recesses for Localized Sensing Layer Deposition

    Get PDF
    This work presents mass-sensitive hammerhead resonators with integrated recesses as a gas-phase chemical microsensor platform. Recesses are etched into the head region of the resonator to locally deposit chemically sensitive polymers by ink-jet printing. This permits the sensing films to be confined to areas that (a) are most effective in detecting mass loading and (b) are not strained during the in-plane vibrations of the resonator. As a result of the second point, even 5-μm thick polymer coatings on resonators with a 9-12 μm silicon thickness barely affect the Q-factor in air. This translates into higher frequency stability and ultimately higher sensor resolution compared to uniformly coated devices

    The Fermionic Density-functional at Feshbach Resonance

    Full text link
    We consider a dilute gas of neutral unpolarized fermionic atoms at zero temperature.The atoms interact via a short range (tunable) attractive interaction. We demonstrate analytically a curious property of the gas at unitarity. Namely, the correlation energy of the gas, evaluated by second order perturbation theory, has the same density dependence as the first order exchange energy, and the two almost exactly cancel each other at Feshbach resonance irrespective of the shape of the potential, provided (μrs)>>1(\mu r_s) >> 1. Here (μ)1(\mu)^{-1} is the range of the two-body potential, and rsr_s is defined through the number density n=3/(4πrs3)n=3/(4\pi r_s^3). The implications of this result for universality is discussed.Comment: Five pages, one table. accepted for publication in PR

    The Finite Field Multi-Way Relay Channel with Correlated Sources: The Three-User Case

    Full text link
    The three-user finite field multi-way relay channel with correlated sources is considered. The three users generate possibly correlated messages, and each user is to transmit its message to the two other users reliably in the Shannon sense. As there is no direct link among the users, communication is carried out via a relay, and the link from the users to the relay and those from the relay to the users are finite field adder channels with additive noise of arbitrary distribution. The problem is to determine the set of all possible achievable rates, defined as channel uses per source symbol for reliable communication. For two classes of source/channel combinations, the solution is obtained using Slepian-Wolf source coding combined with functional-decode-forward channel coding.Comment: to be presented at ISIT 201
    corecore