4,850 research outputs found
Bound states of PT-symmetric separable potentials
All of the PT-symmetric potentials that have been studied so far have been
local. In this paper nonlocal PT-symmetric separable potentials of the form
, where is real, are examined.
Two specific models are examined. In each case it is shown that there is a
parametric region of the coupling strength for which the PT symmetry
of the Hamiltonian is unbroken and the bound-state energies are real. The
critical values of that bound this region are calculated.Comment: 10 pages, 3 figure
Brief Note Preliminary Studies of the Vocal Responses of Territorial Cardinals (Cardinalis Cardinalis) to Songs of a Strange Male
Author Institution: Department of Zoology, Miami Universit
S-Track Stabilization of Heterotic de Sitter Vacua
We present a new mechanism, the S-Track, to stabilize the volume modulus S in
heterotic M-theory flux compactifications along with the orbifold-size T
besides complex structure and vector bundle moduli stabilization. The key
dynamical ingredient which makes the volume modulus stabilization possible, is
M5-instantons arising from M5-branes wrapping the whole Calabi-Yau slice. These
are natural in heterotic M-theory where the warping shrinks the Calabi-Yau
volume along S^1/Z_2. Combined with H-flux, open M2-instantons and hidden
sector gaugino condensation it leads to a superpotential W which stabilizes S
similar like a racetrack but without the need for multi gaugino condensation.
Moreover, W contains two competing non-perturbative effects which stabilize T.
We analyze the potential and superpotentials to show that it leads to heterotic
de Sitter vacua with broken supersymmetry through non-vanishing F-terms.Comment: 16 pages, 2 figures; final PRD versio
The Three-User Finite-Field Multi-Way Relay Channel with Correlated Sources
This paper studies the three-user finite-field multi-way relay channel, where
the users exchange messages via a relay. The messages are arbitrarily
correlated, and the finite-field channel is linear and is subject to additive
noise of arbitrary distribution. The problem is to determine the minimum
achievable source-channel rate, defined as channel uses per source symbol
needed for reliable communication. We combine Slepian-Wolf source coding and
functional-decode-forward channel coding to obtain the solution for two classes
of source and channel combinations. Furthermore, for correlated sources that
have their common information equal their mutual information, we propose a new
coding scheme to achieve the minimum source-channel rate.Comment: Author's final version (accepted and to appear in IEEE Transactions
on Communications
On codimension two flats in Fermat-type arrangements
In the present note we study certain arrangements of codimension flats in
projective spaces, we call them "Fermat arrangements". We describe algebraic
properties of their defining ideals. In particular, we show that they provide
counterexamples to an expected containment relation between ordinary and
symbolic powers of homogeneous ideals.Comment: 9 page
Resonator/zero-Qubit architecture for superconducting qubits
We analyze the performance of the Resonator/zero-Qubit (RezQu) architecture
in which the qubits are complemented with memory resonators and coupled via a
resonator bus. Separating the stored information from the rest of the
processing circuit by at least two coupling steps and the zero qubit state
results in a significant increase of the ON/OFF ratio and the reduction of the
idling error. Assuming no decoherence, we calculate such idling error, as well
as the errors for the MOVE operation and tunneling measurement, and show that
the RezQu architecture can provide high fidelity performance required for
medium-scale quantum information processing.Comment: 11 pages, 5 figure
Innovation und Technologischer Wandel in Österreich
Series: Discussion Papers of the Institute for Economic Geography and GIScienc
Cantilever-based Resonant Gas Sensors with Integrated Recesses for Localized Sensing Layer Deposition
This work presents mass-sensitive hammerhead resonators with integrated recesses as a gas-phase chemical microsensor platform. Recesses are etched into the head region of the resonator to locally deposit chemically sensitive polymers by ink-jet printing. This permits the sensing films to be confined to areas that (a) are most effective in detecting mass loading and (b) are not strained during the in-plane vibrations of the resonator. As a result of the second point, even 5-μm thick polymer coatings on resonators with a 9-12 μm silicon thickness barely affect the Q-factor in air. This translates into higher frequency stability and ultimately higher sensor resolution compared to uniformly coated devices
The Fermionic Density-functional at Feshbach Resonance
We consider a dilute gas of neutral unpolarized fermionic atoms at zero
temperature.The atoms interact via a short range (tunable) attractive
interaction. We demonstrate analytically a curious property of the gas at
unitarity. Namely, the correlation energy of the gas, evaluated by second order
perturbation theory, has the same density dependence as the first order
exchange energy, and the two almost exactly cancel each other at Feshbach
resonance irrespective of the shape of the potential, provided . Here is the range of the two-body potential, and is
defined through the number density . The implications of this
result for universality is discussed.Comment: Five pages, one table. accepted for publication in PR
The Finite Field Multi-Way Relay Channel with Correlated Sources: The Three-User Case
The three-user finite field multi-way relay channel with correlated sources
is considered. The three users generate possibly correlated messages, and each
user is to transmit its message to the two other users reliably in the Shannon
sense. As there is no direct link among the users, communication is carried out
via a relay, and the link from the users to the relay and those from the relay
to the users are finite field adder channels with additive noise of arbitrary
distribution. The problem is to determine the set of all possible achievable
rates, defined as channel uses per source symbol for reliable communication.
For two classes of source/channel combinations, the solution is obtained using
Slepian-Wolf source coding combined with functional-decode-forward channel
coding.Comment: to be presented at ISIT 201
- …
