2,396 research outputs found

    Efficient classical simulation of slightly entangled quantum computations

    Get PDF
    We present a scheme to efficiently simulate, with a classical computer, the dynamics of multipartite quantum systems on which the amount of entanglement (or of correlations in the case of mixed-state dynamics) is conveniently restricted. The evolution of a pure state of n qubits can be simulated by using computational resources that grow linearly in n and exponentially in the entanglement. We show that a pure-state quantum computation can only yield an exponential speed-up with respect to classical computations if the entanglement increases with the size n of the computation, and gives a lower bound on the required growth.Comment: 4 pages. Major changes. Significantly improved simulation schem

    Encoding a qubit in an oscillator

    Get PDF
    Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the noncommutative geometry of phase space to protect against errors that shift the values of the canonical variables q and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states. Finite-dimensional versions of these codes can be constructed that protect encoded quantum information against shifts in the amplitude or phase of a d-state system. Continuous-variable codes can be invoked to establish lower bounds on the quantum capacity of Gaussian quantum channels.Comment: 22 pages, 8 figures, REVTeX, title change (qudit -> qubit) requested by Phys. Rev. A, minor correction

    Quantum Teleportation is a Universal Computational Primitive

    Get PDF
    We present a method to create a variety of interesting gates by teleporting quantum bits through special entangled states. This allows, for instance, the construction of a quantum computer based on just single qubit operations, Bell measurements, and GHZ states. We also present straightforward constructions of a wide variety of fault-tolerant quantum gates.Comment: 6 pages, REVTeX, 6 epsf figure

    Methodology for quantum logic gate constructions

    Full text link
    We present a general method to construct fault-tolerant quantum logic gates with a simple primitive, which is an analog of quantum teleportation. The technique extends previous results based on traditional quantum teleportation (Gottesman and Chuang, Nature {\bf 402}, 390, 1999) and leads to straightforward and systematic construction of many fault-tolerant encoded operations, including the π/8\pi/8 and Toffoli gates. The technique can also be applied to the construction of remote quantum operations that cannot be directly performed.Comment: 17 pages, mypsfig2, revtex. Revised with a different title, a new appendix for clarifying fault-tolerant preparation of quantum states, and various minor change

    Efficient Computations of Encodings for Quantum Error Correction

    Full text link
    We show how, given any set of generators of the stabilizer of a quantum code, an efficient gate array that computes the codewords can be constructed. For an n-qubit code whose stabilizer has d generators, the resulting gate array consists of O(n d) operations, and converts k-qubit data (where k = n - d) into n-qubit codewords.Comment: 16 pages, REVTeX, 3 figures within the tex

    Graph states in phase space

    Full text link
    The phase space for a system of nn qubits is a discrete grid of 2n×2n2^{n} \times 2^{n} points, whose axes are labeled in terms of the elements of the finite field \Gal{2^n} to endow it with proper geometrical properties. We analyze the representation of graph states in that phase space, showing that these states can be identified with a class of non-singular curves. We provide an algebraic representation of the most relevant quantum operations acting on these states and discuss the advantages of this approach.Comment: 14 pages. 2 figures. Published in Journal of Physics

    Dark Matter and the Chemical Evolution of Irregular Galaxies

    Get PDF
    We present three types of chemical evolution models for irregular galaxies: closed-box with continuous star formation rates (SFRs), closed-box with bursting SFRs, and O-rich outflow with continuous SFRs. We discuss the chemical evolution of the irregular galaxies NGC 1560 and II Zw 33, and a ``typical'' irregular galaxy. The fraction of low-mass stars needed by our models is larger than that derived for the solar vicinity, but similar to that found in globular clusters. For our typical irregular galaxy we need a mass fraction of about 40% in the form of substellar objects plus non baryonic dark matter inside the Holmberg radius, in good agreement with the results derived for NGC 1560 and II Zw 33 where we do have an independent estimate of the mass fraction in non baryonic dark matter. Closed-box models are better than O-rich outflow models in explaining the C/O and Z/O observed values for our typical irregular galaxy.Comment: 14 pages, 2 figure, uses emulateapj.sty package. ApJ in press. New models were added. The order of Tables has been correcte

    Noise Thresholds for Higher Dimensional Systems using the Discrete Wigner Function

    Full text link
    For a quantum computer acting on d-dimensional systems, we analyze the computational power of circuits wherein stabilizer operations are perfect and we allow access to imperfect non-stabilizer states or operations. If the noise rate affecting the non-stabilizer resource is sufficiently high, then these states and operations can become simulable in the sense of the Gottesman-Knill theorem, reducing the overall power of the circuit to no better than classical. In this paper we find the depolarizing noise rate at which this happens, and consequently the most robust non-stabilizer states and non-Clifford gates. In doing so, we make use of the discrete Wigner function and derive facets of the so-called qudit Clifford polytope i.e. the inequalities defining the convex hull of all qudit Clifford gates. Our results for robust states are provably optimal. For robust gates we find a critical noise rate that, as dimension increases, rapidly approaches the the theoretical optimum of 100%. Some connections with the question of qudit magic state distillation are discussed.Comment: 14 pages, 1 table; Minor changes vs. version

    Preparing encoded states in an oscillator

    Get PDF
    Recently a scheme has been proposed for constructing quantum error-correcting codes that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. One of the difficult steps in this scheme is the preparation of the encoded states. We show how these states can be generated by coupling a continuous quantum variable to a single qubit. An ion trap quantum computer provides a natural setting for a continuous system coupled to a qubit. We discuss how encoded states may be generated in an ion trap.Comment: 5 pages, 4 figures, RevTe

    Unitarity, quasi-normal modes and the AdS_3/CFT_2 correspondence

    Full text link
    In general, black-hole perturbations are governed by a discrete spectrum of complex eigen-frequencies (quasi-normal modes). This signals the breakdown of unitarity. In asymptotically AdS spaces, this is puzzling because the corresponding CFT is unitary. To address this issue in three dimensions, we replace the BTZ black hole by a wormhole, following a suggestion by Solodukhin [hep-th/0406130]. We solve the wave equation for a massive scalar field and find an equation for the poles of the propagator. This equation yields a rich spectrum of {\em real} eigen-frequencies. We show that the throat of the wormhole is o(e1/G)o(e^{-1/G}), where GG is Newton's constant. Thus, the quantum effects which might produce the wormhole are non-perturbative.Comment: 9 page
    corecore