2,611 research outputs found

    Optical characteristics of single wavelength-tunable InAs/InGaAsP/InP(100) quantum dots emitting at 1.55 um

    Get PDF
    We have studied the emission properties of individual InAs quantum dots (QDs) grown in an InGaAsP matrix on InP(100) by metal-organic vapor-phase epitaxy. Low-temperature microphotoluminescence spectroscopy shows emission from single QDs around 1550 nm with characteristic exciton-biexciton behavior, and a biexciton antibinding energy of more than 2 meV. Temperature-dependent measurements reveal negligible optical-phonon induced broadening of the exciton line up to 50 K, and emission from the exciton state clearly persists above 70 K. Furthermore, we find no measurable polarized fine structure splitting of the exciton state within the experimental precision. These results are encouraging for the development of a controllable photon source for fiber-based quantum information and cryptography systems.Comment: 3 pages, 4 figures, submitted AP

    Glasgow University at TRECVID 2006

    Get PDF
    In the first part of this paper we describe our experiments in the automatic and interactive search tasks of TRECVID 2006. We submitted five fully automatic runs, including a text baseline, two runs based on visual features, and two runs that combine textual and visual features in a graph model. For the interactive search, we have implemented a new video search interface with relevance feedback facilities, based on both textual and visual features. The second part is concerned with our approach to the high-level feature extraction task, based on textual information extracted from speech recogniser and machine translation outputs. They were aligned with shots and associated with high-level feature references. A list of significant words was created for each feature, and it was in turn utilised for identification of a feature during the evaluation

    3D visual speech animation using 2D videos

    Get PDF
    In visual speech animation, lip motion accuracy is of paramount importance for speech intelligibility, especially for the hard of hearing or foreign language learners. We present an approach for visual speech animation that uses tracked lip motion in front-view 2D videos of a real speaker to drive the lip motion of a synthetic 3D head. This makes use of a 3D morphable model (3DMM), built using 3D synthetic head poses, with corresponding landmarks identified in the 2D videos and the 3DMM. We show that using a wider range of synthetic head poses for different phoneme intensities to create a 3DMM, as well as a combination of front and side photographs of the real speakers rather than just front photographs to produce initial neutral 3D synthetic head poses, gives better animation results when compared to ground truth data consisting of front-view 2D videos of real speakers

    Logarithmic scaling in the near-dissipation range of turbulence

    Full text link
    A logarithmic scaling for structure functions, in the form Sp[ln(r/η)]ζpS_p \sim [\ln (r/\eta)]^{\zeta_p}, where η\eta is the Kolmogorov dissipation scale and ζp\zeta_p are the scaling exponents, is suggested for the statistical description of the near-dissipation range for which classical power-law scaling does not apply. From experimental data at moderate Reynolds numbers, it is shown that the logarithmic scaling, deduced from general considerations for the near-dissipation range, covers almost the entire range of scales (about two decades) of structure functions, for both velocity and passive scalar fields. This new scaling requires two empirical constants, just as the classical scaling does, and can be considered the basis for extended self-similarity

    Viscous Instanton for Burgers' Turbulence

    Full text link
    We consider the tails of probability density functions (PDF) for different characteristics of velocity that satisfies Burgers equation driven by a large-scale force. The saddle-point approximation is employed in the path integral so that the calculation of the PDF tails boils down to finding the special field-force configuration (instanton) that realizes the extremum of probability. We calculate high moments of the velocity gradient xu\partial_xu and find out that they correspond to the PDF with ln[P(xu)](xu/Re)3/2\ln[{\cal P}(\partial_xu)]\propto-(-\partial_xu/{\rm Re})^{3/2} where Re{\rm Re} is the Reynolds number. That stretched exponential form is valid for negative xu\partial_xu with the modulus much larger than its root-mean-square (rms) value. The respective tail of PDF for negative velocity differences ww is steeper than Gaussian, lnP(w)(w/urms)3\ln{\cal P}(w)\sim-(w/u_{\rm rms})^3, as well as single-point velocity PDF lnP(u)(u/urms)3\ln{\cal P}(u)\sim-(|u|/u_{\rm rms})^3. For high velocity derivatives u(k)=xkuu^{(k)}=\partial_x^ku, the general formula is found: lnP(u(k))(u(k)/Rek)3/(k+1)\ln{\cal P}(|u^{(k)}|)\propto -(|u^{(k)}|/{\rm Re}^k)^{3/(k+1)}.Comment: 15 pages, RevTeX 3.

    An inertial range length scale in structure functions

    Full text link
    It is shown using experimental and numerical data that within the traditional inertial subrange defined by where the third order structure function is linear that the higher order structure function scaling exponents for longitudinal and transverse structure functions converge only over larger scales, r>rSr>r_S, where rSr_S has scaling intermediate between η\eta and λ\lambda as a function of RλR_\lambda. Below these scales, scaling exponents cannot be determined for any of the structure functions without resorting to procedures such as extended self-similarity (ESS). With ESS, different longitudinal and transverse higher order exponents are obtained that are consistent with earlier results. The relationship of these statistics to derivative and pressure statistics, to turbulent structures and to length scales is discussed.Comment: 25 pages, 9 figure

    Analysis of Velocity Derivatives in Turbulence based on Generalized Statistics

    Full text link
    A theoretical formula for the probability density function (PDF) of velocity derivatives in a fully developed turbulent flow is derived with the multifractal aspect based on the generalized measures of entropy, i.e., the extensive Renyi entropy or the non-extensive Tsallis entropy, and is used, successfully, to analyze the PDF's observed in the direct numerical simulation (DNS) conducted by Gotoh et al.. The minimum length scale r_d/eta in the longitudinal (transverse) inertial range of the DNS is estimated to be r_d^L/eta = 1.716 (r_d^T/eta = 2.180) in the unit of the Kolmogorov scale eta.Comment: 6 pages, 1 figur

    Hydration in a new semiaromatic polyamide observed by humidity-controlled dynamic viscoelastometry and X-ray diffraction

    Get PDF
    This is a preprint of an article published in JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS 2005; 43(13): 1640-1648ArticleJOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS. 43(13): 1640-1648 (2005)journal articl

    Longitudinal Structure Functions in Decaying and Forced Turbulence

    Full text link
    In order to reliably compute the longitudinal structure functions in decaying and forced turbulence, local isotropy is examined with the aid of the isotropic expression of the incompressible conditions for the second and third order structure functions. Furthermore, the Karman-Howarth-Kolmogorov relation is investigated to examine the effects of external forcing and temporally decreasing of the second order structure function. On the basis of these investigations, the scaling range and exponents ζn\zeta_n of the longitudinal structure functions are determined for decaying and forced turbulence with the aid of the extended-self-similarity (ESS) method. We find that ζn\zeta_n's are smaller, for n4n \geq 4, in decaying turbulence than in forced turbulence. The reasons for this discrepancy are discussed. Analysis of the local slopes of the structure functions is used to justify the ESS method.Comment: 15 pages, 16 figure
    corecore