10 research outputs found

    GPU Based Software Correlators - Perspectives for VLBI2010

    Get PDF
    Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec

    Efficacy and safety of micafungin in empiric and D-index-guided early antifungal therapy for febrile neutropenia ; A subgroup analysis of the CEDMIC trial

    Get PDF
    Objectives: The D-index is defined as the area over the neutrophil curve during neutropenia. The CEDMIC trial confirmed the noninferiority of D-index-guided early antifungal therapy (DET) using micafungin to empirical antifungal therapy (EAT). In this study, we evaluated the efficacy and safety of micafungin in these settings. Methods: From the CEDMIC trial, we extracted 67 and 113 patients who received micafungin in the DET and EAT groups, respectively. Treatment success was defined as the fulfilment of all components of a five-part composite end point. Fever resolution was evaluated at seven days after the completion of therapy. Results: The proportion of high-risk treatments including induction chemotherapy for acute leukemia and allogeneic hematopoietic stem cell transplantation was significantly higher in the DET group than in the EAT group (82.1% vs. 52.2%). The efficacy of micafungin was 68.7% (95%CI: 56.2–79.4) and 79.6% (71.0–86.6) in the DET and EAT groups, respectively. When we focused on high-risk treatments, the efficacy was 69.1% (55.2–80.9%) and 78.0% (65.3–87.7%), respectively (P = 0.30). There was no significant difference in any of the 5 components between the two groups. Conclusions: The efficacy of micafungin in patients undergoing high-risk treatment was not strongly impaired in DET compared to that in EAT

    Exosomal miRNA Signatures for Late-Onset Acute Graft-Versus-Host Disease in Allogenic Hematopoietic Stem Cell Transplantation

    No full text
    Recent studies have demonstrated that exosomal microRNAs (miRNAs) have the potential of facilitating molecular diagnosis. Currently, little is known about the underlying mechanism behind late-onset acute graft-versus-host disease (LA GVHD). Identifying differentially expressed miRNAs in exosomes should be useful for understanding the role of miRNAs in this disease. This study was established to investigate the relevance of miRNAs in exosomes derived from patients developing LA GVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Plasma samples were collected from patients with LA GVHD (n = 5), non-GVHD (n = 5), and controls (n = 8) for exosomal miRNA expression profiling using a TaqMan low-density array; the results were validated by quantitative reverse transcription polymerase chain reaction (RT-PCR). We analyzed exosomal miRNAs differentially expressed among these three groups. MirTarBase was employed to predict potential target genes of the miRNAs specific for LA GVHD. We detected 55 miRNAs that were differentially expressed with a significant change >2.0-fold between LA GVHD and non-GVHD. Of these, we selected the 10 miRNAs (miR-423-5p, miR-19a, miR-142-3p, miR-128, miR-193b, miR-30c, miR-193a, miR-191, miR-125b, and miR-574-3p) with the most significant differential expression. Using quantitative RT-PCR, we further identified that miR-128 was significantly upregulated at the onset of LA GVHD compared with that in normal controls and is a promising diagnostic marker of LA GVHD, with an area under the curve (AUC) value of 0.975. MirTarBase analysis revealed that the predicted target genes of miR-128 are involved in the immune system and inflammation. Increased expression of miR-128 may serve as a novel, noninvasive biomarker for early LA GVHD diagnosis

    Tyrosine Kinase Inhibitors Do Not Promote a Decrease in SARS-CoV-2 Anti-Spike IgG after BNT162b2 Vaccination in Chronic Myeloid Leukemia: A Prospective Observational Study

    No full text
    We performed a prospective observational study of chronic myeloid leukemia (CML) patients after anti-SARS-CoV-2 BNT162b2 vaccination (VC). In total, 32 CML patients with tyrosine kinase inhibitor (TKI) therapy, 10 CML patients with treatment-free remission, and 16 healthy subjects participated in the study. From April 2021 to September 2021, all cases (median age = 58 years) were vaccinated twice. Immunoglobulin G for SARS-CoV-2 spike protein (S-IgG) was measured at three timepoints (before the first VC, 1–5 weeks after the second VC (T1), and approximately 6 months after the second VC (T2)). S-IgG was not observed before the first VC in any participant. At T1, all cases had acquired S-IgG. There were no significant differences in S-IgG levels among groups. A paired sample comparison of median S-IgG titers between T1 and T2 in all groups showed a significant reduction in T2 S-IgG titers. There were no significant differences in S-IgG levels among groups. When all patients were analyzed, those aged ≥58 years had significantly lower S-IgG levels than those aged <58 years at T1. The BNT162b2 vaccine was highly effective in CML patients with or without TKIs, and S-IgG levels were as persistent as those in healthy individuals
    corecore