165 research outputs found

    Dimethylsulfoxide-quenched hydrogen/deuterium exchange method to study amyloid fibril structure

    Get PDF
    AbstractA general method to analyze the structure of a supramolecular complex of amyloid fibrils at amino acid residue resolution has been developed. This method combines the NMR-detected hydrogen/deuterium (H/D) exchange technique to detect hydrogen-bonded amide groups and the ability of the aprotic organic solvent dimethylsulfoxide (DMSO) to dissolve amyloid fibrils into NMR-observable, monomeric components while suppressing the undesired H/D exchange reaction. Moreover, this method can be generally applied to amyloid fibrils to elucidate the distribution of hydrogen-bonded amino acid residues in the three-dimensional molecular organization in the amyloid fibrils. In this study, we describe theoretical considerations in the H/D exchange method to obtain the structural information of proteins, and the DMSO-quenched H/D exchange method to study a supramolecular complex of amyloid fibrils. A possible application of this method to study the interaction of a protein/peptide with phospholipid membrane is also discussed

    Evaluation of Effective Field-Effect Mobility in Thin-Film and Single-Crystal Transistors for Revisiting Various Phenacene-Type Molecules

    Get PDF
    The magnitude of the field-effect mobility mu of organic thin-film and single-crystal field-effect transistors (FETs) has been over-estimated in certain recent studies. These reports set alarm bells ringing in the research field of organic electronics. Herein, we report a precise evaluation of the mu values using the effective field-effect mobility, mu(eff), a new indicator that is recently designed to prevent the FET performance of thin-film and single-crystal FETs based on various phenacene molecules from being overestimated. The transfer curves of a range of FETs based on phenacene are carefully categorized on the basis of a previous report. The exact evaluation of the value of mu(eff) depends on the exact classification of each transfer curve. The transfer curves of all our phenacene FETs could be successfully classified based on the method indicated in the aforementioned report, which made it possible to evaluate the exact value of mu(eff) for each FET. The FET performance based on the values of mu(eff) obtained in this study is discussed in detail. In particular, the mu(eff) values of single-crystal FETs are almost consistent with the mu values that were reported previously, but the mu(eff) values of thin-film FETs were much lower than those previously reported for mu, owing to a high absolute threshold voltage, vertical bar V-th vertical bar. The increase in the field-effect mobility as a function of the number of benzene rings, which was previously demonstrated based on the mu values of single-crystal FETs with phenacene molecules, is well reproduced from the mu(eff) values. The FET performance is discussed based on the newly evaluated mu(eff) values, and the future prospects of using phenacene molecules in FET devices are demonstrated

    Spontaneous esophageal perforation within a hiatal hernia : A case report

    Get PDF
    Introduction: Spontaneous esophageal perforation, also commonly referred to as Boerhaave's syndrome, is one of the most lethal diseases causing an acute abdomen. Though rare, emergent surgical intervention is often required and management can be various based upon the site of the perforation. This literature has been written in line with the SCARE criteria (Agha et al., 2020) [1]. Presentation of case: A 76-year-old man presented with acute abdominal pain. Computed tomography (CT) revealed and an emergent esophagogastroduodenoscopy (EGD) was performed carefully, which revealed a 7 cm all-layer esophageal laceration in the left lower esophageal wall. In our case, a hiatal hernia was protruding into the mediastinum, and the perforation site was inside of it, but there was no invasion into the thoracic cavity, thus a transabdominal approach was performed without thoracotomy. Discussion: This type of esophageal perforation within a hiatal hernia is quite rare and provides a unique clinical challenge. In addition, A review reported the average length of spontaneous esophageal perforation to be around 2 cm while our case had a perforation with a length of 7 cm. We chose the combination of the simple suture with omental buttress and wide drainage, but a complete fundoplication was impossible due to its large size of perforation. Conclusion: We chose the open abdominal approach because the case had high inflammation, a hiatal hernia and possibility of retro-gastric perforation. However, MIS should have been considered first if a situation or human resources allow it

    Introducing Nonuniform Strain to Graphene Using Dielectric Nanopillars

    Full text link
    A method for inducing nonuniform strain in graphene films is developed. Pillars made of a dielectric material (electron beam resist) are placed between graphene and the substrate, and graphene sections between pillars are attached to the substrate. The strength and spatial pattern of the strain can be controlled by the size and separation of the pillars. Application of strain is confirmed by Raman spectroscopy as well as from scanning electron microscopy (SEM) images. From SEM images, the maximum stretch of the graphene film reaches about 20%. This technique can be applied to the formation of band gaps in graphene.Comment: Appl. Phys. Express, in pres

    Transistor properties of exfoliated single crystals of 2H-Mo(Se1-x Te-x) 2 ( 0 <= x <= 1)

    Get PDF
    Field-effect transistors (FETs) were fabricated using exfoliated single crystals of Mo(Se1-x Te-x)(2) with an x range of 0 to 1, and the transistor properties fully investigated at 295 K in four-terminal measurement mode. The chemical composition and crystal structure of exfoliated single crystals were identified by energy-dispersive x-ray spectroscopy (EDX), single-crystal x-ray diffraction, and Raman scattering, suggesting the 2H - structure in all Mo(Se1-x Te-x)(2). The lattice constants of a and c increase monotonically with increasing x, indicating the substitution of Se by Te. When x 0.4. In contrast, the polarity of a thick single-crystal Mo(Se1-x Te-x)(2) FET did not change despite an increase in x. The change of polarity in a thin single-crystal FET was well explained by the variation of electronic structure. The absence of such change in the thick single-crystal FET can be reasonably interpreted based on the large bulk conduction due to naturally accumulated electrons. The mu value in the thin single-crystal FET showed a parabolic variation, with a minimum mu at around x = 0.4, which probably originates from the disorder of the single crystal caused by the partial replacement of Se by Te, i.e., a disorder that may be due to ionic size difference of Se and Te

    Exposure to high solar radiation reduces self-regulated exercise intensity in the heat outdoors

    Get PDF
    High radiant heat load reduces endurance exercise performance in the heat indoors, but this remains unconfirmed in outdoor exercise. The current study investigated the effects of variations in solar radiation on self-regulated exercise intensity and thermoregulatory responses in the heat outdoors at a fixed rating of perceived exertion (RPE). Ten male participants completed 45-min cycling exercise in hot outdoor environments (about 31 °C) at a freely chosen resistance and cadence at an RPE of 13 (somewhat hard). Participants were blinded to resistance, pedal cadence, distance and elapsed time and exercised at three sunlight exposure conditions: clear sky (mean ± SD: 1072 ± 91 W·m−2; HIGH); thin cloud (592 ± 32 W·m−2; MID); and thick cloud (306 ± 52 W·m−2; LOW). Power output (HIGH 96 ± 22 W; MID 103 ± 20 W; LOW 108 ± 20 W) and resistance were lower in HIGH than MID and LOW (P < .001). Pedal cadence was lower, the core-to-skin temperature gradient was narrower, body heat gain from the sun (SHG) was greater and thermal sensation was higher with increasing solar radiation and all variables were different between trials (P < .01). Mean skin temperature was higher in HIGH than MID and LOW (P < .01), but core temperature was similar between trials (P = .485). We conclude that self-regulated exercise intensity in the heat outdoors at a fixed RPE of somewhat hard is reduced with increasing solar radiation because of greater thermoregulatory strain, perceived thermal stress and SHG. This suggests that reduced self-selected exercise intensity during high solar radiation exposure in the heat may prevent excessive core temperature rise.PostprintPeer reviewe

    Inhomogeneous superconductivity in thin crystals of FeSe1-xTex (x=1.0, 0.95, and 0.9)

    Get PDF
    We investigated the temperature dependence of resistivity in thin crystals of FeSe1-xTex (x = 1.0, 0.95, and 0.9), though bulk crystals with 1.0 x 0.9 are known to be non-superconducting. With decreasing thickness of the crystals, the resistivity of x = 0.95 and 0.9 decreases and reaches zero at a low temperature, which indicates a clear superconducting transition. The anomaly of resistivity related to the structural and magnetic transitions completely disappears in 55- to 155-nm-thick crystals of x = 0.9, resulting in metallic behavior in the normal state. Microbeam x-ray diffraction measurements were performed on bulk single crystals and thin crystals of FeSe1-xTex. A significant difference of the lattice constant, c, was observed in FeSe1-xTex, which varied with differing Te content (x), and even in crystals with the same x, which was mainly caused by inhomogeneity of the Se/Te distribution. It has been found that the characteristic temperatures causing the structural and magnetic transition (T-t), the superconducting transition (T-c), and the zero resistivity (T-c(zero)) are closely related to the value of c in thin crystals of FeSe1-xTex

    Giant multiple caloric effects in charge transition ferrimagnet

    Get PDF
    磁場と圧力でマルチに冷却可能な酸化物新材料 --フェリ磁性電荷転移酸化物におけるマルチ熱量効果の実証--. 京都大学プレスリリース. 2021-06-22.Caloric effects of solids can provide us with innovative refrigeration systems more efficient and environment-friendly than the widely-used conventional vapor-compression cooling systems. Exploring novel caloric materials is challenging but critically important in developing future technologies. Here we discovered that the quadruple perovskite structure ferrimagnet BiCu₃Cr₄O₁₂ shows large multiple caloric effects at the first-order charge transition occurring around 190 K. Large latent heat and the corresponding isothermal entropy change, 28.2 J K⁻¹ kg⁻¹, can be utilized by applying both magnetic fields (a magnetocaloric effect) and pressure (a barocaloric effect). Adiabatic temperature changes reach 3.9 K for the 50 kOe magnetic field and 4.8 K for the 4.9 kbar pressure, and thus highly efficient thermal controls are achieved in multiple ways

    Fermi level tuning of Ag-doped Bi2Se3 topological insulator

    Get PDF
    The temperature dependence of the resistivity (rho) of Ag-doped Bi2Se3 (AgxBi2-xSe3) shows insulating behavior above 35 K, but below 35 K, rho suddenly decreases with decreasing temperature, in contrast to the metallic behavior for non-doped Bi2Se3 at 1.5-300 K. This significant change in transport properties from metallic behavior clearly shows that the Ag doping of Bi2Se3 can effectively tune the Fermi level downward. The Hall effect measurement shows that carrier is still electron in AgxBi2-xSe3 and the electron density changes with temperature to reasonably explain the transport properties. Furthermore, the positive gating of AgxBi2-xSe3 provides metallic behavior that is similar to that of non-doped Bi2Se3, indicating a successful upward tuning of the Fermi level
    corecore