5 research outputs found

    Increased susceptibility to cardiovascular effects of dihydrocapcaicin in resuscitated rats. Cardiovascular effects of dihydrocapsaicin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivors of a cardiac arrest often have persistent cardiovascular derangements following cardiopulmonary resuscitation including decreased cardiac output, arrhythmias and morphological myocardial damage. These cardiovascular derangements may lead to an increased susceptibility towards the external and internal environment of the cardiovascular system as compared to the healthy situation.</p> <p>Methods</p> <p>Here we tested the hypothesis that the cardiovascular system in healthy rats and rats resuscitated from a cardiac arrest may be differentially affected by a transient receptor potential vanilloid type 1 agonist, by continuous intravenous infusion of dihydrocapsaicin (DHC).</p> <p>Results</p> <p>Compared to baseline, infusion of DHC caused an initial increase in mean arterial blood pressure in both healthy and resuscitated rats of 25% and 10%, respectively. Also, we observed an initial response of tachycardia in both healthy and resuscitated rats of 30% and 20%, respectively. Then, at high levels of DHC infusion (> 2.0 mg/kg/hr) we observed two single episodes of transient bradycardia and hypotension in 33% of the healthy rats, which was consistent with a TRPV1 agonist induced Bezold-Jarisch reflex. In contrast, in resuscitated rats we observed multiple episodes of bradycardia/hypotension in 100% of the rats and at a dose of DHC of 0.65 mg/kg/hr. Notably, this DHC effect could be completely blocked in the resuscitated rats by pre-treatment with atropine, a muscarinic acetylcholine antagonist.</p> <p>Conclusions</p> <p>Our results indicate that the susceptibility of the rats towards TRPV1 agonist induced Bezold-Jarisch reflex is increased in those resuscitated from cardiac arrest compared to the healthy situation.</p

    Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia.</p> <p>Methods</p> <p>First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies. Finally we tested the hypothermic properties in a large animal. The screening was in conscious rats, the dose-response experiments in conscious rats and in cynomologus monkeys, and the finally we tested the hypothermic properties in conscious young cattle (calves with a body weight as an adult human). The investigated TRPV1 agonists were administered by continuous intravenous infusion.</p> <p>Results</p> <p>Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats and cynomologus monkeys DHC caused a dose-dependent and immediate decrease in body temperature. Thus in rats, infusion of DHC at doses of 0.125, 0.25, 0.50, and 0.75 mg/kg/h caused a maximal ΔT (°C) as compared to vehicle control of -0.9, -1.5, -2.0, and -4.2 within approximately 1 hour until the 6 hour infusion was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours.</p> <p>Conclusions</p> <p>Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining therapeutic hypothermia.</p
    corecore