35 research outputs found

    Chaos and predictability of the Indian summer monsoon

    Get PDF
    Predictability of the Indian summer monsoon is investigated by conducting three multiyear integrations with the Geophysical Fluid Dynamics Laboratory's climate model. The mean monsoon simulated by the model is realistic. It is shown that a significant fraction of the interannual variance of the simulated Indian summer monsoon may be due to internal dynamics. It is discovered that the tropical atmosphere is capable of sustaining a quasi-biennial oscillation (QBO) accounting for most of the internal low frequency variability. It is also shown that neither air-sea interaction nor surface hydrology feedback is essential for the QBO of the model atmosphere. That such a QBO can arise due to modulation of the nonlinear intraseasonal oscillations by the annual cycle is demonstrated using a simple nonlinear dynamical model. The phase and the amplitude of the internal mode is unpredictable and hence may be responsible for limiting the long range predictability of the monsoon

    Mechanisms of some tropical intraseasonal oscillations

    Get PDF
    A underlying mechanism for two westward propagating tropical intraseasonal oscillations is discovered. Destabilization of equatorial normal modes by moist feedbacks, in particular, by evaporation-wind feedback, is responsible for both of them. The westward propagating 4-5 day oscillation and the quasi-biweekly oscillation result from destabilization of the mixed Rossby gravity (MRG) wave by the evaporation-wind feedback. The frequency and scale-selection of the the unstable MRG wave depend critically on the background mean wind. In mean easterlies (as in the Pacific and the Atlantic), it results in the 4-5 day oscillation while in mean westerlies (as in the Indian Ocean during northern summer) it results in the quasi-biweekly mode

    On possible impact of the Indian summer monsoon on the ENSO

    Get PDF
    The Indian summer monsoon (ISM) could influence the El Nino and Southern Oscillation (ENSO) only if it could induce significant surface wind anomalies in the active regions of central and eastern equatorial Pacific. Using 50-year NCEP reanalysis, it is shown that observed surface winds in the central and eastern Pacific associated 'purely' with ISM and unrelated to ENSO are very weak (~0.5m.s-1). Strong surface winds in the central and eastern Pacific following a 'strong' or 'weak' ISM, noted in some earlier composite analyses, are related not to ISM but to the concurrent sea surface temperature (SST) forcing associated with the ENSO. A long run of an atmospheric general circulation model (AGCM) without inter-annual SST forcing also show that a 'pure' ISM induces only very weak surface winds in the equatorial central and eastern Pacific. Thus, we conclude that the ISM by itself is unlikely to influence the ENSO in a significant way

    Regime shift in Indian summer monsoon climatological intraseasonal oscillations

    Get PDF
    Using a high resolution daily rainfall data over Indian continent between 1951 and 2004, summer monsoon climatological intraseasonal oscillations (CISO) and its regime shift around mid seventies is investigated. Explaining 20% -40% of intraseasonal oscillation (ISO) amplitude, the summer monsoon CISO represents a significant predictable component of the monsoon ISOs. Indian monsoon CISO is characterized by a dominant northward propagating episode in both pre-seventies (1951-75, pre75) and in the post-seventies (1979-04, post79). The dominant episode starts in the beginning of July during pre75 in contrast to beginning of June during post79 period. We find that the IAV of the initial phase of both the first and the second ISO episodes worked in tandem with the changes in the northward propagation speed in producing the phase locking for the second episode during pre75 while for the first episode during post79. Change in northward propagation speed is shown to be consistent with changes in easterly vertical shear and meridional gradient of low level humidity during the two climate regimes

    The sensitivity of the northern hemisphere summer mean meridional circulation to changes in the large scale eddy forcing

    Get PDF
    A zonally averaged version of the Goddard Laboratory for Atmospheric Sciences (GLAS) climate model is used to study the sensitivity of the northern hemisphere (NH) summer mean meridional circulation to changes in the large scale eddy forcing. A standard solution is obtained by prescribing the latent heating field and climatological horizontal transports of heat and momentum by the eddies. The radiative heating and surface fluxes are calculated by model parameterizations. This standard solution is compared with the results of several sensitivity studies. When the eddy forcing is reduced to 0.5 times or increased to 1.5 times the climatological values, the strength of the Ferrel cells decrease or increase proportionally. It is also seen that such changes in the eddy forcing can influence the strength of theNH Hadley cell significantly. Possible impact of such changes in the large scale eddy forcing on the monsoon circulation via changes in the Hadley circulation is discussed. Sensitivity experiments including only one component of eddy forcing at a time show that the eddy momentum fluxes seem to be more important in maintaining the Ferrel cells than the eddy heat fluxes. In the absence of the eddy heat fluxes, the observed eddy momentum fluxes alone produce subtropical westerly jets which are weaker than those in the standard solution. On the other hand, the observed eddy heat fluxes alone produce subtropical westerly jets which are stronger than those in the standard solution

    Dynamics of "internal” interannual variability of the Indian summer monsoon in a GCM

    Get PDF
    The poor predictability of the Indian summer monsoon (ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal” low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal (June-September, JJAS) mean rainfall from "internal” IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations (ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season (seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc

    Potential predictability and extended range prediction of Indian summer monsoon breaks

    Get PDF
    Extended range prediction (two to three weeks in advance) of Indian summer monsoon active (rainy) and break (dry) phases are of great importance for agricultural planning and water management. Using daily rainfall and circulation data for 23 years, a fundamental property of the monsoon intraseasonal oscillations (ISO's) is discovered and shown that the potential predictability limit (~20 days) of monsoon breaks is significantly higher than that for active conditions (~10 days). An empirical model for prediction of monsoon ISO's is then constructed and feasibility of useful prediction of monsoon breaks up to 18 days in advance is demonstrated

    Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean

    Get PDF
    The link between realism in simulation of the seasonal mean precipitation and summer tropical intraseasonal oscillations and their dependence on cumulus parameterization schemes is investigated using the Florida State University Global Spectral Model (FSUGSM). Forty-member model ensemble simulations of the northern summer season are generated for three different cumulus parameterization schemes [namely, Arakawa-Schubert (Naval Research Laboratory; NRL), Zhang and McFarlane (National Center for Atmospheric Research; NCAR), and Emanuel (Massachusetts Institute of Technology; MIT)]. The MIT scheme simulates the regional pattern of seasonal mean precipitation over the Indian monsoon region well but has large systematic bias in simulating the precipitation over the western Pacific and the Maritime Continent. Although the simulation of details of regional distribution of precipitation over the Indian monsoon region by the NRL and NCAR schemes is not accurate, they simulate the spatial pattern of precipitation over the tropical Indo-Pacific domain closer to observation. The NRL scheme seems to captures the observed northward and eastward propagation of intraseasonal precipitation anomalies realistically. However, the simulations of the NCAR and MIT schemes are dominated by a westward propagating component. The westward propagating mode seen in the model as well as observations is indicated to be an equatorial Rossby wave modified by the northern summer mean flow. An examination of the relationship between simulation of the model climatology and eastward propagating character of monsoon intraseasonal oscillations (ISOs) in a limited sample shows that the scheme that simulates better seasonal mean pattern of rainfall over the tropical Indo-Pacific domain also simulates better intraseasonal variance and more realistic eastward propagation of monsoon ISOs. Among the parameters known to be important for meridional propagation of the summer monsoon ISOs, the meridional gradient of mean humidity in the lower atmosphere seems to be crucial in determining the northward propagation in the equatorial Indian Ocean (between 10°S and 10°N). For better prediction of the seasonal mean Indian monsoon, therefore, the model climatology should have minimum bias not only over the Indian monsoon region but also over the entire Indo-Pacific basin

    Indian Ocean surface winds from NCMRWF analysis as compared to QuikSCAT and moored buoy winds

    Get PDF
    The quality of the surface wind analysis at the National Centre for Medium Range Weather Forecasts (NCMRWF), New Delhi over the tropical Indian Ocean and its improvement in 2001 are examined by comparing it within situ buoy measurements and satellite derived surface winds from NASA QuikSCAT satellite (QSCT) during 1999, 2000 and 2001. The NCMRWF surface winds suffered from easterly bias of 1.0-1.5 ms-1 in the equatorial Indian Ocean (IO) and northerly bias of 2.0-3.0 ms-1 in the south equatorial IO during 1999 and 2000 compared to QSCT winds. The amplitude of daily variability was also underestimated compared to that in QSCT. In particular, the amplitude of daily variability of NCMRWF winds in the eastern equatorial IO was only about 60% of that of QSCT during 1999 and 2000. The NCMRWF surface winds during 2001 have significantly improved with the bias of the mean analyzed winds considerably reduced everywhere bringing it to within 0.5 ms-1 of QSCT winds in the equatorial IO. The amplitude and phase of daily and intraseasonal variability are very close to that in QSCT almost everywhere during 2001. It is shown that the weakness in the surface wind analysis during 1999 and 2000 and its improvement in 2001 are related to the weakness in simulation of precipitation by the forecast model in the equatorial IO and its improvement in 2001

    ENSO control on the south Asian monsoon through the length of the rainy season

    Get PDF
    Being an integral effect of sub-seasonal rain spells over the season, the seasonal mean south Asian monsoon (SAM) rainfall could be affected by change in the length of the rainy season (LRS). An objective definition of the duration of the SAM season has, however, been lacking. Here we show that the meridional gradient of tropospheric temperature (ΔTT) over the SAM region controls the LRS and defines the SAM season. It is further shown that ENSO induces decreased SAM rainfall by regulating the LRS. The atmospheric response to tropical sea surface temperature (SST) over the tropical Pacific during an evolving El Nino reduces ΔTT over the SAM region and shortens LRS by delaying the onset and advancing the withdrawal. The strong negative correlation between LRS and ENSO related SST has remained steady and provides basis for improved prediction of seasonal mean SAM rainfall variability
    corecore