7 research outputs found
Weak antilocalization in quasi-two-dimensional electronic states of epitaxial LuSb thin films
Observation of large non-saturating magnetoresistance in rare-earth
monopnictides has raised enormous interest in understanding the role of its
electronic structure. Here, by a combination of molecular-beam epitaxy,
low-temperature transport, angle-resolved photoemssion spectroscopy, and hybrid
density functional theory we have unveiled the bandstructure of LuSb, where
electron-hole compensation is identified as a mechanism responsible for large
magnetoresistance in this topologically trivial compound. In contrast to bulk
single crystal analogues, quasi-two-dimensional behavior is observed in our
thin films for both electron and holelike carriers, indicative of dimensional
confinement of the electronic states. Introduction of defects through growth
parameter tuning results in the appearance of quantum interference effects at
low temperatures, which has allowed us to identify the dominant inelastic
scattering processes and elucidate the role of spin-orbit coupling. Our
findings open up new possibilities of band structure engineering and control of
transport properties in rare-earth monopnictides via epitaxial synthesis.Comment: 20 pages, 12 figures; includes supplementary informatio
Why Virtue Ethics?
Contemporary virtue ethics, an agent-centred ethical theory, has been presented as a response to inadequacies in more traditional act-centred theories. In this paper, I argue that such a response is insufοcient: contemporary virtue ethics fails to avoid the inadequacies that it purports to avoid, and brings with it problems of its own. This paper is divided into 5 sections, in the οrst of which I introduce contemporary virtue ethics as an agent-centred and pluralistic ethical theory. In section 2, I present inadequacies that virtue ethics claims to avoid: being too reductive, too algorithmic, too abstract, self-effacing, and self-other asymmetric. In section 3, I consider and analyse virtue ethics’ account of right action and of motives in order to argue in section 4 that, if these inadequacies are indeed problems affecting traditional ethical theories, virtue ethics does not avoid these problems either— particularly because of its basis in the concept of virtues and its heavy reliance on phronesis. I show that another ethical theory, limited moral pluralism, has the same advantages of not being overly reductive, algorithmic, or abstract, and being self-other symmetric, and that virtue ethics does not avoid self-effacement as it claims to. I also question here whether self-effacement and self-other asymmetry should be considered problems when evaluating moral theories. Finally, I suggest in section 5 that virtue ethics is open to further criticisms of indeterminacy and lack of explanatory power
Revealing quantum Hall states in epitaxial topological half-Heusler semimetal
Prediction of topological surface states (TSS) in half-Heusler compounds
raises exciting possibilities to realize exotic electronic states and novel
devices by exploiting their multifunctional nature. However, an important
prerequisite is identification of macroscopic physical observables of the TSS,
which has been difficult in these semi-metallic systems due to prohibitively
large number of bulk carriers. Here, we introduce compensation alloying in
epitaxial thin films as an effective route to tune the chemical potential and
simultaneously reduce the bulk carrier concentration by more than two orders of
magnitude compared to the parent compound. Linear magnetoresistance is shown to
appear as a precursor phase that transmutes into a TSS induced quantum Hall
phase on further reduction of the coupling between the surface states and the
bulk carriers. Our approach paves the way to reveal and manipulate exotic
properties of topological phases in Heusler compounds.Comment: 8 pages, 4 figures. Supplementary Infromation contains 7 sections and
17 figure
Recommended from our members
Development of Scalable Quantum Nano-Electronic Devices Using Bottom-Up and Top-Down Fabrication
The invention of integrated circuits (ICs) in the 1960s and the subsequent microelectronics revolution fundamentally altered every aspect of modern technology, ranging from communication to computation and healthcare. Through the last few decades, continued miniaturization of such ICs has led to rapid improvements of device functionalities as well as exponentially reducing cost, thus making these technologies more accessible to everyone. This aggressive scaling has however, pushed device features towards sub-100 nanometer regimes, challenging conventional fabrication techniques. Semiconductor nanostructures can circumvent these challenges and enable further scaling for advanced logic and memory devices. Additionally, such nanostructures exhibit electronic and optical properties, that are of tremendous interest for alternative computing architectures such as quantum computing and photonic circuits, or to build power efficient and ultrafast platforms through low-energy and spin-based devices. Fabricating such nanostructures is not trivial but can be achieved through both “top-down” and “bottom-up” approaches. Top-down approaches, which are commonly followed in the semiconductor industry typically start with a bulk material and fabricate nanostructures through various etching steps. Although this technique is scalable and has been extremely successful in building modern ICs, the damage induced from etching can prove detrimental to the performance of low-dimensional systems. Bottom-up techniques generally refer to growing the nanostructures in an additive method in pre-defined positions on a wafer. Bottom-up approaches have the inherent advantage of exhibiting less defects, due to the elimination of etching steps and can be combined with in-situ patterning to build novel hybrid devices. However, these techniques are simultaneously more challenging to integrate and scale up reliably. For optimal performance of such nanostructures, it is critical to have precise control over their chemical composition, geometries, and material qualities. In this thesis, we will explore both bottom-up and top-down approaches, to achieve such defect-free scalable nanostructures in the context of low-power electronics and quantum computing.
For bottom-up approaches, we investigate two templated epitaxial growth techniques: confined epitaxial lateral overgrowth (CELO) to grow III-V lateral heterostructures and selective area growth (SAG) to grow in-plane III-V nanowires coupled to superconductors. We first discuss the inherent advantages of CELO to fabricate low-power tunneling devices. Next, we explore the use of growth conditions to reduce defects, engineer facets and improve the material qualities and morphologies in CELO nanostructures. Using this, we demonstrate high-quality lateral III-V quantum wells for heterojunction tunnel transistors. For in-plane selective area growths, we investigate the effect of fundamental parameters such as growth temperature, cooldown processes and nanowire orientation and geometries on the nucleation of highly lattice mismatched heterostructures (indium arsenide on indium phosphide). These nanowires can lead to the fabrication of scalable systems with enhanced electrical and optical properties. We also develop in-situ shadowing techniques to create patterned heterostructures of dissimilar materials with pristine disorder-free interfaces. Subsequently, we use this to demonstrate superconductor-semiconductor hybrid nanowire networks for probing low-temperature effects in topologically non-trivial systems.
In the last part of this dissertation, we will shift our focus to top-down techniques for defining aluminum/silicon/aluminum trilayer nanostructures with extreme aspect ratios. Such nanostructures can reduce footprint and enable scaling up of Josephson-junction based superconducting qubit systems.
In conclusion, using both bottom-up and top-down techniques we combine advanced fabrication and epitaxial growth to achieve defect-free III-V scalable nanostructures with disorder-free interfaces. In the future, these nanostructures will enable the scalable fabrication of next-generation efficient computing platforms