317 research outputs found

    Existence, uniqueness and a constructive solution algorithm for a class of finite Markov moment problems

    Full text link
    We consider a class of finite Markov moment problems with arbitrary number of positive and negative branches. We show criteria for the existence and uniqueness of solutions, and we characterize in detail the non-unique solution families. Moreover, we present a constructive algorithm to solve the moment problems numerically and prove that the algorithm computes the right solution

    ATLS® and damage control in spine trauma

    Get PDF
    Substantial inflammatory disturbances following major trauma have been found throughout the posttraumatic course of polytraumatized patients, which was confirmed in experimental models of trauma and in vitro settings. As a consequence, the principle of damage control surgery (DCS) has developed over the last two decades and has been successfully introduced in the treatment of severely injured patients. The aim of damage control surgery and orthopaedics (DCO) is to limit additional iatrogenic trauma in the vulnerable phase following major injury. Considering traumatic brain and acute lung injury, implants for quick stabilization like external fixators as well as decided surgical approaches with minimized potential for additional surgery-related impairment of the patient's immunologic state have been developed and used widely. It is obvious, that a similar approach should be undertaken in the case of spinal trauma in the polytraumatized patient. Yet, few data on damage control spine surgery are published to so far, controlled trials are missing and spinal injury is addressed only secondarily in the broadly used ATLS® polytrauma algorithm. This article reviews the literature on spine trauma assessment and treatment in the polytrauma setting, gives hints on how to assess the spine trauma patient regarding to the ATLS® protocol and recommendations on therapeutic strategies in spinal injury in the polytraumatized patient

    Interaction between superconducting vortices and Bloch wall in ferrite garnet film

    Full text link
    Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure

    Spatial linear global instability analysis of the HIFiRE-5 elliptic cone model flow

    Full text link
    The linear instability of the three-dimensional boundary-layer over the HIFiRE-5 flight test geometry, i.e. a rounded-tip 2:1 elliptic cone, at Mach 7, has been analyzed through spatial BiGlobal analysis, in a effort to understand transition and accurately predict local heat loads on next-generation ight vehicles. The results at an intermediate axial section of the cone, Re x = 8x10 5, show three different families of spatially amplied linear global modes, the attachment-line and cross- ow modes known from earlier analyses, and a new global mode, peaking in the vicinity of the minor axis of the cone, termed \center-line mode". We discover that a sequence of symmetric and anti-symmetric centerline modes exist and, for the basic ow at hand, are maximally amplied around F* = 130kHz. The wavenumbers and spatial distribution of amplitude functions of the centerline modes are documente

    Plasmacytoid dendritic cells of melanoma patients present exogenous proteins to CD4+ T cells after FcÎłRII-mediated uptake

    Get PDF
    Plasmacytoid dendritic cells (pDCs) contribute to innate antiviral immune responses by producing type I interferons. Although human pDCs can induce T cell responses upon viral infection, it remains unclear if pDCs can present exogenous antigens. Here, we show that human pDCs exploit FcγRII (CD32) to internalize antigen–antibody complexes, resulting in the presentation of exogenous antigen to T cells. pDCs isolated from melanoma patients vaccinated with autologous monocyte-derived peptide- and keyhold limpet hemocyanin (KLH)–loaded dendritic cells, but not from nonvaccinated patients or patients that lack a humoral response against KLH, were able to stimulate KLH-specific T cell proliferation. Interestingly, we observed that internalization of KLH by pDCs depended on the presence of serum from vaccinated patients that developed an anti-KLH antibody response. Anti-CD32 antibodies inhibited antigen uptake and presentation, demonstrating that circulating anti-KLH antibodies binding to CD32 mediate KLH internalization. We conclude that CD32 is an antigen uptake receptor on pDCs and that antigen presentation by pDCs is of particular relevance when circulating antibodies are present. Antigen presentation by pDCs may thus modulate the strength and quality of the secondary phase of an immune response

    Analyzing the Influence of Diatomite and Mineral Fertilizers on the Features of Cadmium-Contaminated Urban Lawns

    Get PDF
    Contamination with heavy metals is among key anthropogenic pressures, experienced by urban lawns. It results in depletion of their environmental quality and functions. Implementation of fertilizers, containing silicon, is a promising approach to increase urban lawns’ sustainability to heavy metals’ pollution. Based on the field experiment, an influence of cadmium contamination on the chemical features and biomass quality of modeled urban green lawn ecosystems was studied. We demonstrated an increase of cadmium consumption by biomass on the second year of observations as the result of diatomite implementation together with mineral fertilizers. Both total sugar and disaccharides’ content in biomass was 15-20% higher for the contaminated plots where diatomite was implemented together with mineral fertilizers, compared to the uncontaminated control. This evidences a positive effect of the implemented reclaiming on stress tolerance of the green lawns

    Numerical Investigation on Charring Ablator Geometric Effects: Study of Stardust Sample Return Capsule Heat Shield

    Get PDF
    Sample geometry is very influential in small charring ablative articles where 1D assumption might not be accurate. In heat shield design, 1D is often assumed since the nose radius is much larger than the thickness of charring. Whether the 1D assumption is valid for the heat shield is unknown. Therefore, the geometric effects of Stardust sample return capsule heat shield are numerically studied using a material response program. The developed computer program models material charring, conductive heat transfer, surface energy balance, pyrolysis gas transport and orthotropic material properties in 3D Cartesian coordinates. Simulation results show that the centerline temperatures predicted by 3D model are quite close to 1D model at the surface, but not the case inside the material. The pyrolysis surface gas blowing behaviors are quite similar but differences are observed at later time. Orthotropic model predicted a very different heat shield response to both the isotropic model and the 1D model

    Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up

    Get PDF
    We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact

    Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines?

    Get PDF
    Over the last decades, vaccine development has advanced significantly in pursuing higher safety with less side effects. However, this is often accompanied by a reduction in vaccine immunogenicity and an increased dependency on adjuvants to enhance vaccine potency. Especially for diseases like cancer, it is important that therapeutic vaccines contain adjuvants that promote strong T cell responses. An important mode of action for such adjuvants is to prolong antigen exposure to dendritic cells (DCs) and to induce their maturation. These mature DCs are extremely effective in the activation of antigen-specific T cells, which is a pre-requisite for induction of potent and long-lasting cellular immunity. For the activation of CD8+ cytotoxic T cell responses, however, the exogenous vaccine antigens need to gain access to the endogenous MHCI presentation pathway of DCs, a process referred to as antigen cross-presentation. In this review, we will focus on recent insights in clinically relevant vaccine adjuvants that impact DC cross-presentation efficiency, including aluminum-based nanoparticles, saponin-based adjuvants, and Toll-like receptor ligands. Furthermore, we will discuss the importance of adjuvant combinations and highlight new developments in cancer vaccines. Understanding the mode of action of adjuvants in general and on antigen cross-presentation in DCs in particular will be important for the design of novel adjuvants as part of vaccines able to induce strong cellular immunity
    • …
    corecore