3,142 research outputs found

    Photoassociation dynamics in a Bose-Einstein condensate

    Full text link
    A dynamical many body theory of single color photoassociation in a Bose-Einstein condensate is presented. The theory describes the time evolution of a condensed atomic ensemble under the influence of an arbitrarily varying near resonant laser pulse, which strongly modifies the binary scattering properties. In particular, when considering situations with rapid variations and high light intensities the approach described in this article leads, in a consistent way, beyond standard mean field techniques. This allows to address the question of limits to the photoassociation rate due to many body effects which has caused extensive discussions in the recent past. Both, the possible loss rate of condensate atoms and the amount of stable ground state molecules achievable within a certain time are found to be stronger limited than according to mean field theory. By systematically treating the dynamics of the connected Green's function for pair correlations the resonantly driven population of the excited molecular state as well as scattering into the continuum of non-condensed atomic states are taken into account. A detailed analysis of the low energy stationary scattering properties of two atoms modified by the near resonant photoassociation laser, in particular of the dressed state spectrum of the relative motion prepares for the analysis of the many body dynamics. The consequences of the finite lifetime of the resonantly coupled bound state are discussed in the two body as well as in the many body context. Extending the two body description to scattering in a tight trap reveals the modifications to the near resonant adiabatic dressed levels caused by the decay of the excited molecular state.Comment: 27 pages revtex, 16 figure

    Far-flung Filaments of Ejecta in the Young Supernova Remnant G292.0+1.8

    Full text link
    New optical images of the young SNR G292.0+1.8, obtained from the 0.9-m telescope at CTIO, show a more extensive network of filaments than had been known previously. Filaments emitting in [O III] are distributed throughout much of the 8 arcmin diameter shell seen in X-ray and radio images, including a few at the very outermost shell limits. We have also detected four small complexes of filaments that show [S II] emission along with [OIII]. In a single long-slit spectrum we find variations of almost an order of magnitude in the relative strengths of oxygen and sulfur lines, which must result from abundance variations. None of the filaments, with or without [S II], shows any evidence for hydrogen, so all appear to be fragments of pure SN ejecta. The [S II] filaments provide the first evidence for undiluted products of oxygen burning in the ejecta from the supernova that gave rise to G292.0+1.8. Some oxygen burning must have occurred, but the paucity of [S II]-emitting filaments suggests that either the oxygen burning was not extensive or that most of its products have yet to be excited. Most of the outer filaments exhibit radial, pencil-like morphologies that suggest an origin as Rayleigh-Taylor fingers of ejecta, perhaps formed during the explosion. Simulations of core-collapse supernovae predict such fingers, but these have never before been so clearly observed in a young SNR. The total flux from the SNR in [OIII] 5007 is 5.4 * 10**-12 ergs/cm**2/s. Using a distance of 6 kpc and an extinction correction corresponding to E(B-V) = 0.6 (lower than previous values but more consistent both with our data and radio and X-ray estimates of NH), this leads to a luminosity of 1.6 * 10**35 ergs/s in the 5007 Ang. line.Comment: 32 pages including 10 figures, and 3 tables, accepted for publication in AJ. Vol 132, July 2006. Higher resolution versions of the figures and a pdf of the manuscript can be found at http://www-int.stsci.edu/~long/papers/g292_optical

    Population Change of Counties and Incorporated Places in South Dakota: 1950-180

    Get PDF
    This publication is thirteenth in the population update series based on South Dakota\u27s 1980 population. The tables in this report have been assembled to provide a convenient source of population information for the counties and incorporated places of South Dakota. The basic data have been taken from the U.S. Bureau of the Census, 1980 Census of Population � South Dakota PC80-l-A43 and the 1960 Census of Population-South Dakota PC (1) -43A. The figures are final population counts from the various census

    Vortices in atomic-molecular Bose-Einstein condensates

    Full text link
    The structure and stability of vortices in hybrid atomic-molecular Bose-Einstein condensates is analyzed in the framework of a two-component Gross-Pitaevskii-type model that describes the stimulated Raman-induced photoassociation process. New types of topological vortex states are predicted to exist in the coherently coupled two-component condensates even without a trap, and their nontrivial dynamics in the presence of losses is demonstrated.Comment: 7 pages, 6 figure

    Detection of HI 21 cm-line absorption in the Warm Neutral Medium and in the Outer Arm of the Galaxy

    Get PDF
    Using the Westerbork Synthesis Radio Telescope, we have detected HI 21 cm-line absorption in the Warm Neutral Medium of the Galaxy toward the extragalactic source 3C147. This absorption, at an LSR velocity of -29+/-4 km/s with a full width at half maximum of 53+/-6 km/s, is associated with the Perseus Arm of the Galaxy. The observed optical depth is (1.9+/-0.2)*10**(-3). The estimated spin temperature of the gas is 3600+/-360 K. The volume density is 0.4 per cc assuming pressure equilibrium. Toward two other sources, 3C273 and 3C295, no wide HI 21 cm-line absorption was detected. The highest of the 3sigma lower limits on the spin temperature of the Warm Neutral Medium is 2600 K. In addition, we have also detected HI 21 cm-line absorption from high velocity clouds in the Outer Arm toward 3C147 and 3C380 at LSR velocities of -117.3, -124.5 and -113.7 km/s respectively. We find two distinct temperature components in the high velocity clouds with spin temperatures of greater than 1000 K and less than 200 K, respectively.Comment: 21 pages inclusive of 7 figures and 2 table
    corecore