3,224 research outputs found

    Radio Recombination Lines from Starbursts: NGC 3256, NGC 4945 and the Circinus Galaxy

    Get PDF
    A renewed attempt to detect radio recombination lines from external galaxies has resulted in the measurement of lines from several bright starburst galaxies. The lines are produced by hydrogen ionized by young, high-mass stars and are diagnostic of the conditions and gas dynamics in the starburst regions without problems of dust obscuration. We present here detections of the lines H91alpha and H92alpha near 8.6 GHz from the starburst nuclei in NGC 3256, NGC 4945, and the Circinus galaxy using the ATCA and VLA. Modelling the line emitting region as a collection of H II regions, we derive the required number of H II regions, their temperature, density, and distribution.Comment: 6 pages, to appear in "Proc 331. Heraeus Seminar: The Evolution of Starbursts", Bad Honnef, Germany, Aug 16 - 20, 2004, Eds: S. Huettemeister, S. Aalto, D.J. Bomans, and E. Manthe

    Managing arbuscular mycorrhizal fungi for bioprotection: Mn toxicity

    Get PDF
    We investigated whether an intact extraradical mycelium (ERM) is more effective than other forms of propagule from indigenous arbuscular mycorrhizal fungi (AMF) in providing protection against stress to a host plant. The response of wheat (Triticum aestivum L.) to Mn toxicity was studied in a two-phase greenhouse experiment. In Phase 1, four Mn tolerant species from the natural vegetation, ranging from strongly mycotrophic to non- or weakly mycotrophic, were grown to develop different amounts of ERM. Wheat was then planted (Phase 2) with the ERM fragmented by sieving (Disturbed Treatment) or kept intact with no prior soil disturbance (Undisturbed Treatment). The growth of wheat was doubled by earlier and faster mycorrhizal colonization (AC) in the presence of an intact ERM at planting. There was a positive correlation between plant growth and the reduction of Mn and enhancement of P and S uptake into shoots. However, the growth of plants in undisturbed soil was significantly affected by the ERM developer species, which was not explained by differences in AC. Colonization starting from an intact ERM greatly enhanced the potential of AMF for protection against Mn toxicity. However, the degree of protection depended on the plant previously grown to develop the ERM, suggesting that there may be functional diversity within the ERM developed by mycotrophic plants of the natural vegetation

    Interaction between Arbuscular Mycorrhizal Fungi and rhizobia on the growth of subclover under Mn toxicity: The role of Extraradical Mycelium.

    Get PDF
    When Arbuscular Mycorrhizal (AM) colonization started from an intact extraradical mycelium (ERM) its bioprotective effect on subclover was enhanced in comparison with other sources of inoculum. The presence in the soil of an intact ERM, developed previously on mycotrophic plants tolerant to Mn toxicity, resulted in the earlier colonization of subclover, reduced Mn concentration in the roots, improved development and activity of root nodules, and enhanced N acquisition

    VLA Observations of the "Eye of the Tornado"- the High Velocity \HII Region G357.63-0.06

    Get PDF
    The unusual supernova remnant candidate G357.7-0.1 and the compact source G357.63-0.06 have been observed with the Very Large Array at 1.4 and 8.3 GHz. The H92α\alpha line (8.3 GHz) was detected from the compact source with a surprising velocity of about -210 km/s indicating that this source is an \HII region, is most likely located at the Galactic center, and is unrelated to the SNR. The \HI absorption line (1.4 GHz) data toward these sources supports this picture and suggests that G357.7-0.1 lies farther away than the Galactic center.Comment: Latex, 14 pages including 4 figures. Accepted to A

    The Stellar Content of Obscured Galactic Giant H II Regions IV.: NGC3576

    Get PDF
    We present deep, high angular resolution near-infrared images of the obscured Galactic Giant H II region NGC3576. Our images reach objects to ~3M_sun. We collected high signal-to-noise K-band spectra of eight of the brightest objects, some of which are affected by excess emission and some which follow a normal interstellar reddening law. None of them displayed photospheric features typical of massive OB type stars. This indicates that they are still enshrouded in their natal cocoons. The K-band brightest source (NGC3576 #48) shows CO 2.3 micron bandhead emission, and three others have the same CO feature in absorption. Three sources display spatially unresolved H_2 emission, suggesting dense shocked regions close to the stars. We conclude that the remarkable object NGC3576 #48 is an early-B/late-O star surrounded by a thick circumstellar disk. A number of other relatively bright cluster members also display excess emission in the K-band, indicative of reprocessing disks around massive stars (YSOs). Such emission appears common in other Galactic Giant H II regions we have surveyed. The IMF slope of the cluster, Gamma = -1.51, is consistent with Salpeter's distribution and similar to what has been observed in the Magellanic Cloud clusters and in the periphery of our Galaxy.Comment: 14 pages, 11 figures, accepted for publication in A

    Spatial Variations in Galactic H I Structure on AU-Scales Toward 3C 147 Observed with the Very Long Baseline Array

    Full text link
    This paper reports dual-epoch, Very Long Baseline Array observations of H I absorption toward 3C 147. One of these epochs (2005) represents new observations while one (1998) represents the reprocessing of previous observations to obtain higher signal-to-noise results. Significant H I opacity and column density variations, both spatially and temporally, are observed with typical variations at the level of \Delta\tau ~ 0.20 and in some cases as large as \Delta\tau ~ 0.70, corresponding to column density fluctuations of order 5 x 10^{19} cm^{-2} for an assumed 50 K spin temperature. The typical angular scale is 15 mas; while the distance to the absorbing gas is highly uncertain, the equivalent linear scale is likely to be about 10 AU. Approximately 10% of the face of the source is covered by these opacity variations, probably implying a volume filling factor for the small-scale absorbing gas of no more than about 1%. Comparing our results with earlier results toward 3C 138 (Brogan et al.), we find numerous similarities, and we conclude that small-scale absorbing gas is a ubiquitous phenomenon, albeit with a low probability of intercept on any given line of sight. Further, we compare the volumes sampled by the line of sight through the Galaxy between our two epochs and conclude that, on the basis of the motion of the Sun alone, these two volumes are likely to be substantially different. In order to place more significant constraints on the various models for the origin of these small-scale structures, more frequent sampling is required in any future observations.Comment: 16 pages with 10 figures in 24 files; AASTeX format; accepted by A

    PKS B1400-33: an unusual radio relic in a poor cluster

    Get PDF
    We present new arcminute resolution radio images of the low surface brightness radio source PKS B1400-33 that is located in the poor cluster Abell S753. The observations consist of 330 MHz VLA, 843 MHz MOST and 1398 and 2378 MHz ATCA data. These new images, with higher surface brightness sensitivity than previous observations, reveal that the large scale structure consists of extended filamentary emission bounded by edge-brightened rims. The source is offset on one side of symmetrically distributed X-ray emission that is centered on the dominant cluster galaxy NGC 5419. PKS B1400-33 is a rare example of a relic in a poor cluster with radio properties unlike those of most relics and halos observed in cluster environments. The diffuse source appears to have had an unusual origin and we discuss possible mechanisms. We examine whether the source could be re-energized relic radio plasma or a buoyant synchrotron bubble that is a relic of activity in NGC 5419. The more exciting prospect is that the source is relic plasma preserved in the cluster gaseous environment following the chance injection of a radio lobe into the ICM as a result of activity in a galaxy at the periphery of the cluster.Comment: 26 pages, 8 figures, accepted for publication in the Astronomical Journa
    corecore