3,358 research outputs found

    OH Maser sources in W49N: probing differential anisotropic scattering with Zeeman pairs

    Full text link
    Our analysis of a VLBA 12-hour synthesis observations of the OH masers in W49N has provided detailed high angular-resolution images of the maser sources, at 1612, 1665 and 1667 MHz. The images, of several dozens of spots, reveal anisotropic scatter broadening; with typical sizes of a few tens of milli-arc-seconds and axial ratios between 1.5 to 3. The image position angles oriented perpendicular to the galactic plane are interpreted in terms of elongation of electron-density irregularities parallel to the galactic plane, due to a similarly aligned local magnetic field. However, we find the apparent angular sizes on the average a factor of 2.5 less than those reported by Desai et al., indicating significantly less scattering than inferred earlier. The average position angle of the scattered broadened images is also seen to deviate significantly (by about 10 degrees) from that implied by the magnetic field in the Galactic plane. More intriguingly, for a few Zeeman pairs in our set, we find significant differences in the scatter broadened images for the two hands of polarization, even when apparent velocity separation is less than 0.1 km/s. Here we present the details of our observations and analysis, and discuss the interesting implications of our results for the intervening anisotropic magneto-ionic medium, as well as a comparison with the expectations based on earlier work.Comment: 5 pages, 3 figures, submitted to the Proceedings of the IAU Symposium 287: "Cosmic masers - from OH to H0

    The neutral gas in the environs of the Geminga gamma-ray pulsar

    Get PDF
    We present a high-resolution (24 arcsec) study of the HI interstellar gas distribution around the radio-quiet neutron star Geminga. Based on Very Large Array (VLA) and MPIfR Effelsberg telescope data, we analyzed a 40' x 40' field around Geminga. These observations have revealed the presence of a neutral gas shell, 0.4 pc in radius, with an associated HI mass of 0.8 Msun, which surrounds Geminga at a radial velocity compatible with the kinematical distance of the neutron star. In addition, morphological agreement is observed between the internal face of the HI shell and the brightest structure of Geminga's tail observed in X-rays.We explore the possibility that this morphological agreement is the result of a physical association.Comment: One tarfile including a Latex file (7 pages) and two figures. Paper accepted for publication in Advances in Space Research; typos corrected; changes in section Results and Discussion after referee's suggestions. S. Johnston's affilation correcte

    VLA Detection of the Ionized Stellar Winds Arising from Massive Stars in the Galactic Center Arches Cluster

    Get PDF
    The Galactic center Arches stellar cluster, detected and studied until now only in the near-infrared, is comprised of at least one hundred massive (M>20 Msun) stars. Here we report the detection at centimeter wavelengths of radio continuum emission from eight radio sources associated with the cluster. Seven of these radio sources have rising spectral indices between 4.9 and 8.5 GHz and coincide spatially with the brightest stars in the cluster, as determine from JHK photometry and Brackett alpha and Brackett Gamma spectroscopy. Our results confirm the presence of powerful ionized winds in these stars. The eighth radio source has a nonthermal spectrum and its nature is yet unclear, but it could be associated with a lower mass young star in the cluster.Comment: 6 pages, 2 embedded figures, accepted to ApJLetter

    Sub-Milliarcsecond Precision of Pulsar Motions: Using In-Beam Calibrators with the VLBA

    Full text link
    We present Very Long Baseline Array phase-referenced measurements of the parallax and proper motion of two pulsars, B0919+06 and B1857-26. Sub-milliarcsecond positional accuracy was obtained by simultaneously observing a weak calibrator source within the 40' field of view of the VLBA at 1.5 GHz. We discuss the merits of using weak close calibrator sources for VLBI observations at low frequencies, and outline a method of observation and data reduction for these type of measurements. For the pulsar B1919+06 we measure a parallax of 0.31 +/- 0.14 mas. The accuracy of the proper motions is approximately 0.5 mas, an order of magnitude improvement over most previous determinations.Comment: 11 pages plus 4 figures. In press, Astronomical Journa
    corecore