27 research outputs found

    Assessment of the impact of the COVID-19 pandemic on health services use

    Get PDF
    OBJECTIVES: The coronavirus disease of 2019 (COVID-19) pandemic declared by the World Health Organization on March 11, 2020 impacted healthcare services with provider and patient cancellations, delays, and patient avoidance or delay of emergency department or urgent care. Limited data exist on the population proportion affected by delayed healthcare, which is important for future healthcare planning efforts. Our objective was to evaluate the impact of the COVID-19 pandemic on healthcare service cancellations or delays and delays/avoidance of emergency/urgent care overall and by population characteristics. STUDY DESIGN: This was a cross-sectional study. METHODS: Our sample (n = 2314) was assembled through a phone survey from 8/12/2020-10/27/2020 among non-institutionalized St. Louis County, Missouri, USA residents ≥18 years. We asked about provider and patient-initiated cancellations or delays of appointments and pandemic-associated delays/avoidance of emergency/urgent care overall and by participant characteristics. We calculated weighted prevalence estimates by select resident characteristics. RESULTS: Healthcare services cancellations or delays affected ∼54% (95% CI 50.6%-57.1%) of residents with dental (31.1%, 95% CI 28.1%-34.0%) and primary care (22.1%, 95% CI 19.5%-24.6%) being most common. The highest prevalences were among those who were White, ≥65 years old, female, in fair/poor health, who had health insurance, and who had ≥1 medical condition. Delayed or avoided emergency/urgent care impacted ∼23% (95% CI 19.9%-25.4%) of residents with a higher prevalence in females than males. CONCLUSIONS: Healthcare use disruptions impacted a substantial proportion of residents. Future healthcare planning efforts should consider these data to minimize potential morbidity and mortality from delayed care

    Physician Experiences and Understanding of Genomic Sequencing in Oncology

    Full text link
    The amount of information produced by genomic sequencing is vast, technically complicated, and can be difficult to interpret. Appropriately tailoring genomic information for nonâ geneticists is an essential next step in the clinical use of genomic sequencing. To initiate development of a framework for genomic results communication, we conducted eighteen qualitative interviews with oncologists who had referred adult cancer patients to a matched tumorâ normal tissue genomic sequencing study. In our qualitative analysis, we found varied levels of clinician knowledge relating to sequencing technology, the scope of the tumor genomic sequencing study, and incidental germline findings. Clinicians expressed a perceived need for more genetics education. Additionally, they had a variety of suggestions for improving results reports and possible resources to aid in results interpretation. Most clinicians felt genetic counselors were needed when incidental germline findings were identified. Our research suggests that more consistent genetics education is imperative in ensuring the proper utilization of genomic sequencing in cancer care. Clinician suggestions for results interpretation resources and results report modifications could be used to improve communication. Cliniciansâ perceived need to involve genetic counselors when incidental germline findings were found suggests genetic specialists could play a critical role in ensuring patients receive appropriate followâ up.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147187/1/jgc40187.pd

    Membrane lipid composition of bronchial epithelial cells influences antiviral responses during rhinovirus infection

    No full text
    Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defence of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection.While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies

    Ready-to-use therapeutic food with elevated n-3 polyunsaturated fatty acid content, with or without fish oil, to treat severe acute malnutrition; a randomized controlled trial

    No full text
    Background Ready-to-use therapeutic foods (RUTF) are lipid-based pastes widely used in the treatment of acute malnutrition. Current specifications for RUTF permit a high n-6 polyunsaturated fatty acid (PUFA) content and low n-3 PUFA, with no stipulated requirements for preformed long-chain n-3 PUFA. The objective of this study was to develop an RUTF with elevated short-chain n-3 PUFA and measure its impact, with and without fish oil supplementation, on children’s PUFA status during treatment of severe acute malnutrition. Methods This randomized controlled trial in children with severe acute malnutrition in rural Kenya included 60 children aged 6 to 50 months who were randomized to receive i) RUTF with standard composition; ii) RUTF with elevated short chain n-3 PUFA; or iii) RUTF with elevated short chain n-3 PUFA plus fish oil capsules. Participants were followed-up for 3 months. The primary outcome was erythrocyte PUFA composition. Results Erythrocyte docosahexaenoic acid (DHA) content declined from baseline in the two arms not receiving fish oil. Erythrocyte long-chain n-3 PUFA content following treatment was significantly higher for participants in the arm receiving fish oil than for those in the arms receiving RUTF with elevated short chain n-3 PUFA or standard RUTF alone: 3 months after enrolment, DHA content was 6.3% (interquartile range 6.0–7.3), 4.5% (3.9–4.9), and 3.9% (2.4–5.7) of total erythrocyte fatty acids (P <0.001), respectively, while eicosapentaenoic acid (EPA) content was 2.0% (1.5–2.6), 0.7% (0.6–0.8), and 0.4% (0.3–0.5) (P <0.001). RUTF with elevated short chain n-3 PUFA and fish oil capsules were acceptable to participants and carers, and there were no significant differences in safety outcomes. Conclusions PUFA requirements of children with SAM are not met by current formulations of RUTF, or by an RUTF with elevated short-chain n-3 PUFA without additional preformed long-chain n-3 PUFA. Clinical and growth implications of revised formulations need to be addressed in large clinical trials

    Application of 'omics technologies to biomarker discovery in inflammatory lung diseases.

    No full text
    Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an "unbiased" approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the 'omics field. The contributions of the individual 'omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease

    Ready-to-use therapeutic food with elevated n-3 polyunsaturated fatty acid content, with or without fish oil, to treat severe acute malnutrition; a randomized controlled trial

    Get PDF
    Background Ready-to-use therapeutic foods (RUTF) are lipid-based pastes widely used in the treatment of acute malnutrition. Current specifications for RUTF permit a high n-6 polyunsaturated fatty acid (PUFA) content and low n-3 PUFA, with no stipulated requirements for preformed long-chain n-3 PUFA. The objective of this study was to develop an RUTF with elevated short-chain n-3 PUFA and measure its impact, with and without fish oil supplementation, on children’s PUFA status during treatment of severe acute malnutrition. Methods This randomized controlled trial in children with severe acute malnutrition in rural Kenya included 60 children aged 6 to 50 months who were randomized to receive i) RUTF with standard composition; ii) RUTF with elevated short chain n-3 PUFA; or iii) RUTF with elevated short chain n-3 PUFA plus fish oil capsules. Participants were followed-up for 3 months. The primary outcome was erythrocyte PUFA composition. Results Erythrocyte docosahexaenoic acid (DHA) content declined from baseline in the two arms not receiving fish oil. Erythrocyte long-chain n-3 PUFA content following treatment was significantly higher for participants in the arm receiving fish oil than for those in the arms receiving RUTF with elevated short chain n-3 PUFA or standard RUTF alone: 3 months after enrolment, DHA content was 6.3% (interquartile range 6.0–7.3), 4.5% (3.9–4.9), and 3.9% (2.4–5.7) of total erythrocyte fatty acids (P &lt;0.001), respectively, while eicosapentaenoic acid (EPA) content was 2.0% (1.5–2.6), 0.7% (0.6–0.8), and 0.4% (0.3–0.5) (P &lt;0.001). RUTF with elevated short chain n-3 PUFA and fish oil capsules were acceptable to participants and carers, and there were no significant differences in safety outcomes. Conclusions PUFA requirements of children with SAM are not met by current formulations of RUTF, or by an RUTF with elevated short-chain n-3 PUFA without additional preformed long-chain n-3 PUFA. Clinical and growth implications of revised formulations need to be addressed in large clinical trials
    corecore