20 research outputs found

    Caged oysters still get scared: Predator presence and density influence growth in oysters, but only at very close ranges

    Full text link
    Two common forms of variation that may influence consumptive and non-consumptive effects differently are how the biomass of predators is allocated among individual predators (e.g., several small vs few large predators) and how predators are spaced throughout a community. We analyzed how varying the presence, biomass (density, size, and total biomass), and distance to crown conchs (Melongena corona) impacted growth in eastern oysters (Crassostrea virginica) grown in field conditions. The presence of predators decreased growth (new shell added and mass) and increased shell thickness in a 58-day experiment. Although these effects were more pronounced as predator density increased, total predator biomass and predator size had limited impact on the strength of non-consumptive effects. The allocation of total oyster mass between shell and tissue was also not impacted by predator treatments. Results from a 96-day study examining the range of these effects indicated that they may exist only over short distances or change as oysters grow, as oysters at varying distances from a caged predator showed no differences in growth traits. These results show that non-consumptive interactions in oyster reef communities may be highly non-linear in regards to predator community structure and exposure distance and indicate these factors may be important in determining the impact of non-consumptive effects in other communities. Our growth data also show that non-consumptive effects may have major impacts on oyster growth under normal aquaculture conditions and suggest that these effects may need to be considered in management efforts

    Natural cultch type influences habitat preference and predation, but not survival, in reef-associated species

    Full text link
    A shared origin with fresh and dredged cultch and availability via mining have made fossil cultch a commonly used reef restoration substrate. However, important differences in shape and size between whole-shell cultch and fossil cultch may impact the complexity of reefs constructed from these materials. To determine if these differences may impact the development of restored reefs, we quantified the interstitial space each cultch type provides and constructed reef mesocosms to measure (1) the immediate effects of exposure to each cultch type on mortality of blue crab (Callinectes sapidus) and pink shrimp (Farfantepenaeus duorarum); (2) the tendency of crab, shrimp, and Florida crown conch (Melongena corona) to be found on habitats composed of each substrate type and their position within each in split-substrate mesocosms; and (3) the influence of cultch type on predation of Eastern oysters (Crassostrea virginica) by crabs and conch. Aggregation of fossil cultch contain more shells and provide less interstitial space than an equivalent volume of whole-shell cultch. Although immediate mortality following deployment was low and did not differ among cultch types, we found that all species were more likely to be found on fresh cultch over fossil cultch in choice experiments and used each habitat type differently. Cultch type also impacted the size of oysters consumed by crabs in short-term feeding trials. The structure and traits of habitats created by various materials should be added to the growing list of issues considered when natural communities are to be restored in oyster reefs and other environments

    Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations

    Get PDF
    Background Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Label-free assessment of endothelial cell metabolic state using autofluorescent microscopy

    No full text
    To examine the process of endothelial cell aging we utilised hyperspectral imaging to collect broad autofluorescence emission at the individual cellular level and mathematically isolate the characteristic spectra of nicotinamide and flavin adenine dinucleotides (NADH and FAD, respectively). Quantitative analysis of this data provides the basis for a non-destructive spatial imaging method for cells and tissue. FAD and NADH are important factors in cellular metabolism and have been shown to be involved with the redox state of the cell; with the ratio between the two providing the basis for an ‘optical redox ratio’.2 page(s

    Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale

    No full text
    Aim: We examined (1) the relationships between aboveground tropical forest C storage, biodiversity and environmental drivers and (2) how these relationships inform theory concerning ecosystem function and biodiversity. Experiments have shown that there is a positive relationship between biodiversity and ecosystem functioning, but intense debate exists on the underlying mechanisms. While some argue that mechanisms such as niche complementarity increase ecosystem function, others argue that these relationships are a selection effect. Location: Eleven tropical forests in the Americas, Africa and Asia. Methods: We analysed the correlates of biodiversity and carbon storage in tropical forests using data from 59 1-ha tree plots from a standardized global tropical forest biodiversity-monitoring network. We examined taxonomic and functional diversity, aboveground C storage and environmental variables in order to determine the relationships between biodiversity and carbon storage in natural (non-plantation) tropical forests. Results: We found that aboveground C storage in tropical forests increased with both taxonomic diversity and functional dominance, specifically the dominance of genera with large maximum diameters, after potential environmental drivers were accounted for (final model R2 = 0.38, P \u3c 0.001). Main conclusions: Our results suggest that niche complementarity and the selection effect are not mutually exclusive: they both play a role in structuring tropical forests. While previous studies have documented relationships between diversity and C storage, these have largely been conducted on small scales in biomes that are relatively species poor compared with tropical forests (e.g. grasslands and temperate or boreal forests). Our results demonstrate that these positive biodiversity–ecosystem functioning relationships are also present in hyperdiverse systems on spatial scales relevant to conservation and management. This insight can be used to inform the conservation and management of tropical forests, which play a critical role in the global carbon cycle and are some of the biologically richest ecosystems on the planet
    corecore