60 research outputs found
Selective small molecule induced degradation of the BET bromodomain protein BRD4
The Bromo- and Extra-Terminal (BET)
proteins BRD2, BRD3, and BRD4
play important roles in transcriptional regulation, epigenetics, and
cancer and are the targets of pan-BET selective bromodomain inhibitor
JQ1. However, the lack of intra-BET selectivity limits the scope of
current inhibitors as probes for target validation and could lead
to unwanted side effects or toxicity in a therapeutic setting. We
designed Proteolysis Targeted Chimeras (PROTACs) that tether JQ1 to
a ligand for the E3 ubiquitin ligase VHL, aimed at triggering the
intracellular destruction of BET proteins. Compound MZ1 potently and
rapidly induces reversible, long-lasting, and unexpectedly selective
removal of BRD4 over BRD2 and BRD3. The activity of MZ1 is dependent
on binding to VHL but is achieved at a sufficiently low concentration
not to induce stabilization of HIF-1α. Gene expression profiles
of selected cancer-related genes responsive to JQ1 reveal distinct
and more limited transcriptional responses induced by MZ1, consistent
with selective suppression of BRD4. Our discovery opens up new opportunities
to elucidate the cellular phenotypes and therapeutic implications
associated with selective targeting of BRD4
The discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain “reader” modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition
- …