53 research outputs found

    Physicochemical Properties and Catalytic Applications of Iron Porphyrazines and Phthalocyanines

    Get PDF
    Porphyrazines and phthalocyanines belong to porphyrinoids, which are macrocyclic compounds consisting of four pyrrole or indole rings, respectively. The aromatic rings of porphyrazines and phthalocyanines are fused together by azamethine bridges (meso nitrogen atoms) in place of methine bridges present in porphyrins. The physicochemical properties of these macrocycles can be modified in two ways. The first is by substitution of metal cation in the core, whereas the second relies on peripheral modification with various substituents. Porphyrazines and phthalocyanines can be modified inside the macrocyclic core with various transition metal cations, including iron(II/III), which impacts their electrochemical properties and influences potential applications in redox reactions. Due to their unique optical and electrochemical properties, porphyrazines and phthalocyanines found many potential and practical applications in medicine and technology. They were mainly researched as photosensitizers in photodynamic therapy, as sensors in biomedical and analytical applications or as building blocks for materials chemistry. This chapter presents physicochemical properties and catalytic applications of iron porphyrazines and phthalocyanines. The first part summarizes the influence of peripheral and axial substituents of iron(II/III) porphyrazines and phthalocyanines on their spectral properties, whereas the second focuses on the electrochemical properties of these molecules. The third part covers the activity of selected iron(II/III) porphyrazines and phthalocyanines of potential value for diverse applications including catalytic reactions

    Dendrimer Structure Diversity and Tailorability as a Way to Fight Infectious Diseases

    Get PDF
    Dendrimers represent a distinct class of polymers—highly branched and uniform, with a relatively small size when compared to their mass. They are composed of the core, from which branched polymeric dendrons diverge and they are end‐capped with selected terminal groups. Recently, dendrimers have attracted considerable attention from medicinal chemists, mostly due to their well‐defined and easy‐to‐modify structure. This chapter aims to compile dendrimer applications and activities especially for prevention and fighting off infections caused by bacteria and fungi, viruses, and parasites/protozoa. Our goal in this review is to discuss selected modifications of dendrimers of potential value for pharmaceutical chemistry

    Nurses and Pharmacists in Interdisciplinary Team of Health Care Providers in Photodynamic Therapy

    Get PDF
    Background: The modern treatment is based on wide cooperation between diverse representatives of medical professions. The photodynamic therapy is a noninvasive method of treatment both neoplastic diseases and miscellaneous noncancerous illnesses. It is complementary and competitive in some way to various traditional treatment techniques, including chemotherapy, radiotherapy, and surgery. This review emphasizes the significance of collaboration between specialists engaged in research, development, and practical use of photodynamic therapy

    S-seco-porphyrazine as a new member of the seco-porphyrazine family – Synthesis, characterization and photocytotoxicity against cancer cells

    Get PDF
    An important subgroup within the porphyrazine (Pz) family constitutes seco-porphyrazines, in the chemical structure of which one pyrrole unit is opened in the oxidative process. So far, there are only limited data on N-seco- and C-seco-Pzs. Here, the synthesis of a novel member of the Pzs seco-family, represented by an S-seco-tribenzoporphyrazine analogue, 22,23-bis(4-(3,5-dibutoxycarbonylphenoxy)butylsulfanyl)tribenzo[b,g,l]-22,23-dioxo-22,23-seco-porphyrazinato magnesium(II), is reported, with moderate 34% yield. The new derivative was characterized using NMR spectroscopy, UV–Vis spectroscopy, and mass spectrometry. In the photochemical study performed following the indirect chemical method with 1,3-diphenylisobenzofuran, S-seco-Pz revealed a high singlet oxygen quantum yield of 0.27 in DMF. Potential photocytotoxicity of S-seco-Pz was assessed in vitro on three cancer cell lines – two oral squamous cell carcinoma cell lines derived from the tongue (CAL 27, HSC-3) and human cervical epithelial adenocarcinoma cells (HeLa). In the biological study, the macrocycle was tested in its free form and after loading into liposomes. It is worth noting that S-seco-Pz was found to be non-toxic in the dark, with cell viability levels over 80%. The photocytotoxic IC50 values for free S-seco-Pz were 0.61, 0.18, and 4.1 ”M for CAL 27, HSC-3 and HeLa cells, respectively. Four different liposomal compositions were analyzed, and the cationic liposomes revealed the highest photokilling efficacy, with the IC50 values for CAL 27, HSC-3, and HeLa cells at 0.24, 0.25, and 0.31 ”M, respectively. The results of the photocytotoxicity study indicate that the new S-seco-tribenzoporphyrazine can be considered as a potential photosensitizer in photodynamic therapy of cancer, along with the developed cationic liposomal nanocarrier

    Zinc(II) Sulfanyltribenzoporphyrazines with Bulky Peripheral Substituents—Synthesis, Photophysical Characterization, and Potential Photocytotoxicity

    No full text
    The study’s aim was to synthesize new unsymmetrical sulfanyl zinc(II) porphyrazines and subject them to physicochemical and electrochemical characterization and also an initial acute toxicity assessment. The procedure was initiated from a commercially available dimercaptomaleonitrile disodium salt and o-phthalonitrile using Linstead’s macrocyclization reaction conditions, which led to magnesium(II) tribenzoporphyrazine with 4-(3,5-dibutoxycarbonylphenoxy)butylthio substituents. The obtained macrocycle was demetallated with trifluoroacetic acid and subsequently remetallated with zinc(II) acetate toward the zinc(II) porphyrazine derivative. The zinc(II) tribenzoporphyrazine with 4-(3,5-dibutoxycarbonylphenoxy)butylthio substituents was then subjected to the reduction reaction with LiAlH4, yielding zinc(II) tribenzoporphyrazine with 4-[3,5-di(hydroxymethyl)phenoxy]butylthio substituents. The new zinc(II) tribenzoporphyrazines were characterized by UV-Vis spectroscopy, various NMR techniques (1HNMR, 13CNMR, 1H-1H COSY, 1H-13C HSQC, and 1H-13C HMBC), and mass spectrometry. In the UV-Vis spectra, both macrocycles revealed characteristic Soret and Q-bands, whose positions were dependent on the solvent used for the measurements. Zinc(II) tribenzoporphyrazines were studied using electrochemical and photochemical methods, including the singlet oxygen generation assessment. Both zinc(II) porphyrazines revealed high singlet oxygen generation quantum yield values of up to 0.59 in DMSO, which indicates their potential photosensitizing potential for photodynamic therapy. In addition, new derivatives were subjected to a Microtox¼ bioluminescence assay

    Promising Photocytotoxicity of Water-Soluble Phtalocyanine against Planktonic and Biofilm <i>Pseudomonas aeruginosa</i> Isolates from Lower Respiratory Tract and Chronic Wounds

    No full text
    Alternative methods of killing microbes have been extensively researched in connection with the widespread appearance of antibiotic resistance among pathogenic bacteria. In this study, we report on in vitro antimicrobial phototoxicity research of cationic phthalocyanine with 2-(4-N-methylmorpholin-4-ium-4-yl)ethoxy substituents against selected clinical strains of Pseudomonas aeruginosa isolated from the lower respiratory tract and chronic wounds. The microorganisms tested in the research were analyzed in terms of drug resistance and biofilm formation. The photocytotoxic effect of phthalocyanine was determined by the reduction factor of bacteria. The studied cationic phthalocyanine at a concentration of 1.0 × 10−4 M, when activated by light, revealed a significant reduction factor, ranging from nearly 4 to 6 log, of P. aeruginosa cells when compared to the untreated control group. After single irradiation, a decrease in the number of bacteria in biofilm ranging from 1.3 to 4.2 log was observed, whereas the second treatment significantly improved the bacterial reduction factor from 3.4 to 5.5 log. It is worth mentioning that a boosted cell-death response was observed after the third irradiation, with a bacterial reduction factor ranging from 4.6 to 6.4 log. According to the obtained results, the tested photosensitizer can be considered as a potential antimicrobial photodynamic therapy against multidrug-resistant P. aeruginosa

    Porphyrazines containing styryldiazepine rings and their liposomal formulations: preparation, photochemical properties and photodynamic activity against oral cancer cell lines

    No full text
    Photodynamic therapy (PDT) is a novel, alternative, anticancer treatment, which has also been used to cure cardiovascular, dermatological, and ophthalmic diseases as well as various microbial infections. PDT consists of three factors: compound (photosynthesizer), oxygen, and light. Upon irradiation with light of specific wavelength the photosynthesizer undergoes activation and produces reactive oxygen species such as singlet oxygen. As a consequence, it leads to the death of the treated tissue. Here we present our data to the synthesis of prophyrazines and tribenzoporphyrazines containing styryldiazepine rings. Condensation reactions of known dicyanodiazepins with 3,4,5-trimetoxybenzaldehyde and 1-methyl-2-imidazolecarbaldehyde led to the novel 1,4-diazepine-2,3-dicarbonitriles containing arylvinyl substituents. However, only diazepines with 3,4,5-trimetoxyphenyl groups subjected to macrocyclization reactions gave the desired macrocycles of sufficient stability. Novel macrocyclic compounds were characterized using various spectroscopic methods and extensively investigated in photochemical studies. Moreover, their photodynamic activity was examined in vitro using two human oral squamous cell carcinoma cell lines, HSC-3 cells derived from the tongue and H413 cells from the buccal mucosa. Magnesium tribenzoprophyrazine (Pz1) revealed high activity against cancer cells even at low concentrations and low light dose. Moreover, significantly higher cytotoxicity of Pz1 was observed after its incorporation into negatively charged liposomes

    Current View on Green Tea Catechins Formulations, Their Interactions with Selected Drugs, and Prospective Applications for Various Health Conditions

    No full text
    Green tea extract (GTE) is one of the most popular beverages globally, traditionally prepared from Camelia sinensis leaves. Therefore, it is beneficial to define the impact of GTE and its ingredients on the human organism. Epigallocatechin-3-O-gallate (EGCG) is the most abundant catechin in green tea leaves, belonging to the group of tannins and flavonoids, demonstrating pharmacological activity, but so far, it has not been applied as a drug. This is because EGCG does not present sufficient stability and quickly decomposes through epimerization or autooxidation mechanisms under the influence of light, temperature, changes in pH, or the presence of oxygen. Another limiting factor is EGCG’s low bioavailability after oral administration. Nevertheless, the growing market of dietary supplements together with increasing growing consumption of green tea extracts should prompt us to pay more attention to the safety of both EGCG itself, as well as its influence on other simultaneously used drugs. Previously published data confirm the relationship between healthcare professionals’ access to professional knowledge and their willingness to engage in patient education. For this reason, in this review article, we report the formulations of EGCG and GTE, discuss the data on the safety of EGCG and its possible interactions with drugs, as well as gather various recommendations from medical specialists. Particular attention should be paid to the consumption of green tea during pregnancy and breastfeeding, as well as in the elderly. Patients taking clozapine, digoxin, and warfarin should avoid consuming GTE extracts and dietary supplements containing EGCG. Professional consultation seems especially important for patients treated with statins, calcium channel blockers, or sildenafil

    Nipagin-Functionalized Porphyrazine and Phthalocyanine—Synthesis, Physicochemical Characterization and Toxicity Study after Deposition on Titanium Dioxide Nanoparticles P25

    No full text
    Aza-porphyrinoids exhibit distinct spectral properties in UV-Vis, and they are studied in applications such as photosensitizers in medicine and catalysts in technology. The use of appropriate peripheral substituents allows the modulation of their physicochemical properties. Phthalocyanine and sulfanyl porphyrazine octa-substituted with 4-(butoxycarbonyl)phenyloxy moieties were synthesized and characterized using UV-Vis and NMR spectroscopy, as well as mass spectrometry. A comparison of porphyrazine with phthalocyanine aza-porphyrinoids revealed that phthalocyanine macrocycle exhibits higher singlet oxygen generation quantum yields, reaching the value of 0.29 in DMF. After both macrocycles had been deposited on titanium dioxide nanoparticles P25, the cytotoxicities and photocytotoxicities of the prepared materials were studied using a MicrotoxÂź acute toxicity test. The highest cytotoxicity occurred after irradiation with a red light for the material composed of phthalocyanine deposited on titania nanoparticles

    Photosensitizers mediated photodynamic inactivation against virus particles

    No full text
    Viruses cause many diseases in humans from the rather innocent common cold to more serious or chronic, life-threatening infections. The long-term sideeffects, sometimes low effectiveness of standard pharmacotherapy and the emergence of drug resistance require a search for new alternative or complementary antiviral therapeutic approaches. One new approach to inactivate microorganisms is photodynamic antimicrobial chemotherapy (PACT). PACT has evolved as a potential method to inactivate viruses. The great challenge for PACT is to develop a methodology enabling the effective inactivation of viruses while leaving the host cells as untouched as possible. This review aims to provide some main directions of antiviral PACT, taking into account different photosensitizers, which have been widely investigated as potential antiviral agents. In addition, several aspects concerning PACT as a tool to assure viral inactivation in human blood products will be addressed.status: publishe
    • 

    corecore