574 research outputs found
Simultaneous Measurements of Gas-Solid Flow Rates and Pressure Drop in Downcomer of J-Valve in CFB
To monitor the gas and solid streams in a downcomer of a J-valve in a CFB, the simultaneous measurement technique using the oxygen gas tracer, the hot particle tracer and the pressure drop was developed. By using this novel measurement technique, the dependence of the solid flow on the gas flow in the moving bed in the downcomer of J-valve was investigated. The pressure profile and the pressure balance in the J-valve as well as the CFB were measured. It was clarified that the circulating mass flux in a CFB or solid flow in a J-valve was governed by the pressure drop in the downcomer of the J-valve.
The pressure drop in the downcomer of the J-valve was well estimated using the modified Ergun’s equation. To quantitatively control the circulating rate of the solid particles in the CFB, the monitor and tuning of the superficial gas velocity in the downcomer of the J-valve was important
Theory for Photon-Assisted Macroscopic Quantum Tunneling in a Stack of Intrinsic Josephson Junctions
We propose a theory for photon-assisted macroscopic quantum tunneling (MQT)
in a stack of capacitively-coupled intrinsic Josephson junctions in which the
longitudinal Josephson plasma, i.e., longitudinal collective phase oscillation
modes, is excited. The scheme of energy-level quantization in the collective
oscillatory states is clarified in the -junction system. When the MQT occurs
from the single-plasmon states excited by microwave irradiation in the
multi-photon process to the uniform voltage state, our theory predicts that the
escape rate is proportional to . This result is consistent with the recent
observation in Bi-2212 intrinsic Josephson junctions.Comment: 5 pages, 2 figure
Identification of a TPX2-Like Microtubule-Associated Protein in Drosophila
Chromosome segregation during mitosis and meiosis relies on the spindle and the functions of numerous microtubule-associated proteins (MAPs). One of the best-studied spindle MAPs is the highly conserved TPX2, which has been reported to have characteristic intracellular dynamics and molecular activities, such as nuclear localisation in interphase, poleward movement in the metaphase spindle, microtubule nucleation, microtubule stabilisation, microtubule bundling, Aurora A kinase activation, kinesin-5 binding, and kinesin-12 recruitment. This protein has been shown to be essential for spindle formation in every cell type analysed so far. However, as yet, TPX2 homologues have not been found in the Drosophila genome. In this study, I found that the Drosophila protein Ssp1/Mei-38 has significant homology to TPX2. Sequence conservation was limited to the putative spindle microtubule-associated region of TPX2, and intriguingly, D-TPX2 (Ssp1/Mei-38) lacks Aurora A- and kinesin-5-binding domains, which are highly conserved in other animal and plant species, including many insects such as ants and bees. D-TPX2 uniformly localised to kinetochore microtubule-enriched regions of the metaphase spindle in the S2 cell line, and it had microtubule binding and bundling activities in vitro. In comparison with other systems, the contribution of D-TPX2 to cell division seems to be minor; live cell imaging of microtubules and chromosomes after RNAi knockdown identified significant delay in chromosome congression in only 18% of the cells. Thus, while this conserved spindle protein is present in Drosophila, other mechanisms may largely compensate for its spindle assembly and chromosome segregation functions
HGPD: Human Gene and Protein Database, 2012 update
The Human Gene and Protein Database (HGPD; http://www.HGPD.jp/) is a unique database that stores information on a set of human Gateway entry clones in addition to protein expression and protein synthesis data. The HGPD was launched in November 2008, and 33 275 human Gateway entry clones have been constructed from the open reading frames (ORFs) of full-length cDNA, thus representing the largest collection in the world. Recently, research objectives have focused on the development of new medicines and the establishment of novel diagnostic methods and medical treatments. And, studies using proteins and protein information, which are closely related to gene function, have been undertaken. For this update, we constructed an additional 9974 human Gateway entry clones, giving a total of 43 249. This set of human Gateway entry clones was named the Human Proteome Expression Resource, known as the ‘HuPEX’. In addition, we also classified the clones into 10 groups according to protein function. Moreover, in vivo cellular localization data of proteins for 32 651 human Gateway entry clones were included for retrieval from the HGPD. In ‘Information Overview’, which presents the search results, the ORF region of each cDNA is now displayed allowing the Gateway entry clones to be searched more easily
Development of Prototype Low-cost and High-strength Fault Current Interrupting Arcing Horns for 77 kV Overhead Transmission Lines
Fault Current Interrupting Arcing Horns (FCIAH) are newly designed arcing horns installed on transmis-sion line towers as a countermeasure against lightning damage that greatly contribute to reducing power interruption by interrupting fault current independently within an AC cycle. This paper describes the de-velopment of two new prototype FCIAH for further cost reduction and strength enhancement, using computational fluid dynamics and short-circuit tests
Optical conductivity of rattling phonons in type-I clathrate BaGaGe
A series of infrared-active optical phonons have been detected in type-I
clathrate BaGaGe by terahertz time-domain spectroscopy. The
conductivity spectra with the lowest-lying peaks at 1.15 and 1.80 THz are
identified with so-called rattling phonons, i.e., optical modes of the guest
ion Ba with symmetry in the oversized tetrakaidecahedral
cage. The temperature dependence of the spectra from these modes are totally
consistent with calculations based on a one-dimensional anharmonic potential
model that, with decreasing temperature, the shape becomes asymmetrically sharp
associated with a softening for the weight to shift to lower frequency. These
temperature dependences are determined, without any interaction effects, by the
Bose-factor for optical excitations of anharmonic phonons with the nonequally
spaced energy levels.Comment: 4 pages, 4 figure
Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis
Summary: In patients with postmenopausal osteoporosis, prior osteoporosis treatment affected the bone mineral density increase of following treatment with 12 months of romosozumab, although it did not affect that of following treatment with 12 months of denosumab after romosozumab. Purpose: To investigate the effects of prior osteoporosis treatment on the response to treatment with romosozumab (ROMO) followed by denosumab (DMAb) in patients with postmenopausal osteoporosis. Methods: In this prospective, observational, multicenter study, treatment-naïve patients (Naïve; n = 55) or patients previously treated with bisphosphonates (BP; n = 37), DMAb (DMAb; n = 45) or teriparatide (TPTD; n = 17) (mean age, 74.6 years; T-scores of the lumbar spine [LS] − 3.2 and total hip [TH] − 2.6) were switched to ROMO for 12 months, followed by DMAb for 12 months. Bone mineral density (BMD) and serum bone turnover markers were evaluated for 24 months. Results: A BMD increase was observed at 12 and 24 months in the following patients: Naïve (18.2% and 22.0%), BP (10.2% and 12.1%), DMAb (6.6% and 9.7%), and TPTD (10.8% and 15.0%) (P < 0.001 between the groups at both 12 and 24 months) in LS and Naïve (5.5% and 8.3%), BP (2.9% and 4.1%), DMAb (0.6% and 2.2%), and TPTD (4.3% and 5.4%) (P < 0.01 between the groups at 12 months and P < 0.001 at 24 months) in TH, respectively. The BMD increase in LS from 12 to 24 months was negatively associated with the levels of bone resorption marker at 24 months. Incidences of major fragility fractures for the respective groups were as follows: Naïve (5.5%), BP (16.2%), DMAb (11.1%), and TPTD (5.9%). Conclusions: Previous treatment affected the BMD increase of following treatment with ROMO, although it did not affect that of following treatment with DMAb after ROMO.This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00198-022-06386-yEbina K., Etani Y., Tsuboi H., et al. Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis. Osteoporosis International 33, 1807 (2022
Human Gene and Protein Database (HGPD): a novel database presenting a large quantity of experiment-based results in human proteomics
Completion of human genome sequencing has greatly accelerated functional genomic research. Full-length cDNA clones are essential experimental tools for functional analysis of human genes. In one of the projects of the New Energy and Industrial Technology Development Organization (NEDO) in Japan, the full-length human cDNA sequencing project (FLJ project), nucleotide sequences of approximately 30 000 human cDNA clones have been analyzed. The Gateway system is a versatile framework to construct a variety of expression clones for various experiments. We have constructed 33 275 human Gateway entry clones from full-length cDNAs, representing to our knowledge the largest collection in the world. Utilizing these clones with a highly efficient cell-free protein synthesis system based on wheat germ extract, we have systematically and comprehensively produced and analyzed human proteins in vitro. Sequence information for both amino acids and nucleotides of open reading frames of cDNAs cloned into Gateway entry clones and in vitro expression data using those clones can be retrieved from the Human Gene and Protein Database (HGPD, http://www.HGPD.jp). HGPD is a unique database that stores the information of a set of human Gateway entry clones and protein expression data and helps the user to search the Gateway entry clones
- …