105 research outputs found

    Chiral Correction to the Spin Fluctuation Feedback in two-dimensional p-wave Superconductors

    Full text link
    We consider the stability of the superconducting phase for spin-triplet p-wave pairing in a quasi-two-dimensional system. We show that in the absence of spin-orbit coupling there is a chiral contribution to spin fluctuation feedback which is related to spin quantum Hall effect in a chiral superconducting phase. We show that this mechanism supports the stability of a chiral p-wave state.Comment: 8 pages. The final version is accepted for publication in Europhys Let

    Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems

    Full text link
    A criterion to determine the existence of zero-energy edge states is discussed for a class of particle-hole symmetric Hamiltonians. A ``loop'' in a parameter space is assigned for each one-dimensional bulk Hamiltonian, and its topological properties, combined with the chiral symmetry, play an essential role. It provides a unified framework to discuss zero-energy edge modes for several systems such as fully gapped superconductors, two-dimensional d-wave superconductors, and graphite ribbons. A variants of the Peierls instability caused by the presence of edges is also discussed.Comment: Completely rewritten. Discussions on coexistence of is- or id_{xy}-wave order parameter near edges in d_{x^{2}-y^{2}}-wave superconductors are added; 4 pages, 3 figure

    Quantized spin Hall effect in Helium three-A and other p-wave paired Fermi systems

    Full text link
    In this paper we propose the quantized spin Hall effect (SHE) in the vortex state of a rotating p-wave paired Fermi system in an inhomogeneous magnetic field and in a weak periodic potential. It is the three dimensional extension of the spin Hall effect for a 3He-A superfluid film studied in Ref. [1]. It may also be considered as a generalization of the 3D quantized charge Hall effect of Bloch electrons in Ref. [2] to the spin transport. The A-phase of 3He or, more generally, the p-wave paired phase of a cold Fermi atomic gas, under suitable conditions should be a good candidate to observe the SHE, because the system has a conserved spin current (with no spin-orbit couplings).Comment: 6 pages, revised version

    Spontaneous magnetization and Hall effect in superconductors with broken time-reversal symmetry

    Full text link
    Broken time reversal symmetry (BTRS) in d wave superconductors is studied and is shown to yield current carrying surface states. The corresponding spontaneous magnetization is temperature independent near the critical temperature Tc for weak BTRS, in accord with recent data. For strong BTRS and thin films we expect a temperature dependent spontaneous magnetization with a paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero wavevector q and finite frequency w, however at finite q,w it has an unusual structure.Comment: 7 pages, 1 eps figure, Europhysics Letters (in press

    Vortex with Fractional Quantum Numbers in Chiral p-Wave Superconductor

    Full text link
    We show that a vortex in a chiral p-wave superconductor, which has the p_{x}+ i p_{y}-wave pairing state and breaks U(1), parity and time reversal symmetry simultaneously, has fractional charge -{n e}/{4} and fractional angular momentum -n^{2}/{16} (n; vorticity). This suggests that the vortex could be anyon and could obey fractional statistics. Electromagnetic property of the vortex is also discussed and we find that an electric field is induced near the vortex core.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.

    Numerical Renormalization Group Study of Kondo Effect in Unconventional Superconductors

    Full text link
    Orbital degrees of freedom of a Cooper pair play an important role in the unconventional superconductivity. To elucidate the orbital effect in the Kondo problem, we investigated a single magnetic impurity coupled to Cooper pairs with a px+ipyp_x +i p_y (dx2y2+idxyd_{x^2-y^2}+id_{xy}) symmetry using the numerical renormalization group method. It is found that the ground state is always a spin doublet. The analytical solution for the strong coupling limit explicitly shows that the orbital dynamics of the Cooper pair generates the spin 1/2 of the ground state.Comment: 4 pages, 2 figures, JPSJ.sty, to be published in J. Phys. Soc. Jpn. 70 (2001) No. 1

    Axial Anomaly Effect in Chiral p-wave Superconductor

    Full text link
    We analyze the chiral p-wave superconductor in the low temperature region. The superconductor has a epsilon_{x} p_{x} + i epsilon_{y} p_{y}-wave gap in two dimensional space (2D). Near the second superconducting transition point, the system could be described by a quasi-1D chiral p-wave model in 2D. The axial anomaly occurs in such a model and causes an accumulation of the quasiparticle in an inhomogeneous magnetic field. The effect is related to the winding number of the gap.Comment: 12 pages, 1 figure, RevTex. The final version is accepted for publication in J. Phys. Soc. Jp

    Impurity Induced Polar Kerr Effect in A Chiral p-wave Superconductor

    Full text link
    We discuss the polar Kerr effect (PKE) in a chiral p-wave (p_x+i p_y-wave) superconductor. It is found that the off-diagonal component of a current-current correlation function is induced by impurity scattering in the chiral p-wave condensate, and a nonzero Hall conductivity is obtained using the Kubo formula. We estimate the Kerr rotation angle by using this impurity-induced Hall conductivity and compare it with experimental results [Jing Xia et al., Phys. Rev. Lett. 97, 167002 (2006)].Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. B Rapid Communicatio

    Temporal Oscillation of Conductances in Quantum Hall Effect of Bloch Electrons

    Full text link
    We study a nonadiabatic effect on the conductances in the quantum Hall effect of two-dimensional electrons with a periodic potential. We found that the Hall and longitudinal conductances oscillate in time with a very large frequencies due to quantum fluctuation.Comment: 8 pages, 4 figure
    corecore