research

Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems

Abstract

A criterion to determine the existence of zero-energy edge states is discussed for a class of particle-hole symmetric Hamiltonians. A ``loop'' in a parameter space is assigned for each one-dimensional bulk Hamiltonian, and its topological properties, combined with the chiral symmetry, play an essential role. It provides a unified framework to discuss zero-energy edge modes for several systems such as fully gapped superconductors, two-dimensional d-wave superconductors, and graphite ribbons. A variants of the Peierls instability caused by the presence of edges is also discussed.Comment: Completely rewritten. Discussions on coexistence of is- or id_{xy}-wave order parameter near edges in d_{x^{2}-y^{2}}-wave superconductors are added; 4 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020