47 research outputs found
Classical Cepheids: Yet another version of the Baade-Becker-Wesselink method
We propose a new version of the Baade--Becker--Wesselink technique, which
allows one to independently determine the colour excess and the intrinsic
colour of a radially pulsating star, in addition to its radius, luminosity, and
distance. It is considered to be a generalization of the Balona approach. The
method also allows the function F(CI) = BC + 10 log (Teff) for the class of
pulsating stars considered to be calibrated. We apply this technique to a
number of classical Cepheids with very accurate light and radial-velocity
curves and with bona fide membership in open clusters (SZ Tau, CF Cas, U Sgr,
DL Cas, GY Sge), and find the results to agree well with the reddening
estimates of the host open clusters. The new technique can also be applied to
other pulsating variables, e.g. RR Lyrae and RV Tauri.Comment: 6 pages, 2 figures, 1 table; Submitted to Astrophysical Bulletin,
201
Cepheid Period-Radius and Period-Luminosity Relations and the Distance to the LMC
We have used the infrared Barnes-Evans surface brightness technique to derive
the radii and distances of 34 Galactic Cepheid variables. Radius and distance
results obtained from both versions of the technique are in excellent
agreement. The radii of 28 variables are used to determine the period-radius
relation. This relation is found to have a smaller dispersion than in previous
studies, and is identical to the period-radius relation found by Laney & Stobie
from a completely independent method, a fact which provides persuasive evidence
that the Cepheid period-radius relation is now determined at a very high
confidence level. We use the accurate infrared distances to determine
period-luminosity relations in the V, I, J, H and K passbands from the Galactic
sample of Cepheids. We derive improved slopes of these relations from updated
LMC Cepheid samples and adopt these slopes to obtain accurate absolute
calibrations of the PL relation. By comparing these relations to the ones
defined by the LMC Cepheids, we derive strikingly consistent and precise values
for the LMC distance modulus in each of the passbands which yield a mean value
of DM (LMC) = 18.46 +- 0.02.
Our results show that the infrared Barnes-Evans technique is very insensitive
to both Cepheid metallicity and adopted reddening, and therefore a very
powerful tool to derive accurate distances to nearby galaxies by a direct
application of the technique to their Cepheid variables, rather than by
comparing PL relations of different galaxies, which introduces much more
sensitivity to metallicity and absorption corrections which are usually
difficult to determine.Comment: LaTeX, AASTeX style, 9 Figures, 10 Tables, The Astrophysical Journal
in press (accepted Oct. 14, 1997). Fig. 3 replace
High Mass Triple Systems: The Classical Cepheid Y Car
We have obtained an HST STIS ultraviolet high dispersion Echelle mode
spectrum the binary companion of the double mode classical Cepheid Y Car. The
velocity measured for the hot companion from this spectrum is very different
from reasonable predictions for binary motion, implying that the companion is
itself a short period binary. The measured velocity changed by 7 km/ s during
the 4 days between two segments of the observation confirming this
interpretation. We summarize "binary" Cepheids which are in fact members of
triple system and find at least 44% are triples. The summary of information on
Cepheids with orbits makes it likely that the fraction is under-estimated.Comment: accepted by A