39 research outputs found
New insights into the possible role of bacteriophages in host defense and disease
BACKGROUND: While the ability of bacteriophages to kill bacteria is well known and has been used in some centers to combat antibiotics – resistant infections, our knowledge about phage interactions with mammalian cells is very limited and phages have been believed to have no intrinsic tropism for those cells. PRESENTATION OF THE HYPOTHESIS: At least some phages (e.g., T4 coliphage) express Lys-Arg-Gly (KGD) sequence which binds β3 integrins (primarily αIIbβ3). Therefore, phages could bind β3+ cells (platelets, monocytes, some lymphocytes and some neoplastic cells) and downregulate activities of those cells by inhibiting integrin functions. TESTING THE HYPOTHESIS: Binding of KGD+ phages to β3 integrin+ cells may be detected using standard techniques involving phage – mediated bacterial lysis and plaque formation. Furthermore, the binding may be visualized by electron microscopy and fluorescence using labelled phages. Binding specificity can be confirmed with the aid of specific blocking peptides and monoclonal antibodies. In vivo effects of phage – cell interactions may be assessed by examining the possible biological effects of β3 blockade (e.g., anti-metastatic activity). IMPLICATION OF THE HYPOTHESIS: If, indeed, phages can modify functions of β3+ cells (platelets, monocytes, lymphocytes, cancer cells) they could be important biological response modifiers regulating migration and activities of those cells. Such novel understanding of their role could open novel perspectives in their potential use in treatment of cardiovascular and autoimmune disease, graft rejection and cancer
p-Wave holographic superconductors with Weyl corrections
We study the (3+1) dimensional p-wave holographic superconductors with Weyl
corrections both numerically and analytically. We describe numerically the
behavior of critical temperature with respect to charge density
in a limited range of Weyl coupling parameter and we find in general
the condensation becomes harder with the increase of parameter . In
strong coupling limit of Yang-Mills theory, we show that the minimum value of
obtained from analytical approach is in good agreement with the
numerical results, and finally show how we got remarkably a similar result in
the critical exponent 1/2 of the chemical potential and the order
parameter with the numerical curves of superconductors.Comment: 7 pages, 1 figure, 1 table. One refrence added, presentations
improve
The Araucaria Project: A study of the classical Cepheid in the eclipsing binary system OGLE LMC562.05.9009 in the Large Magellanic Cloud
We present a detailed study of the classical Cepheid in the double-lined,
highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a
fundamental mode pulsator with a period of 2.988 days. The orbital period of
the system is 1550 days. Using spectroscopic data from three 4-8-m telescopes
and photometry spanning 22 years, we were able to derive the dynamical masses
and radii of both stars with exquisite accuracy. Both stars in the system are
very similar in mass, radius and color, but the companion is a stable,
non-pulsating star. The Cepheid is slightly more massive and bigger (M_1 = 3.70
+/- 0.03M_sun, R_1 = 28.6 +/- 0.2R_sun) than its companion (M_2 = 3.60 +/-
0.03M_sun, R_2 = 26.6 +/- 0.2R_sun). Within the observational uncertainties
both stars have the same effective temperature of 6030 +/- 150K. Evolutionary
tracks place both stars inside the classical Cepheid instability strip, but it
is likely that future improved temperature estimates will move the stable giant
companion just beyond the red edge of the instability strip. Within current
observational and theoretical uncertainties, both stars fit on a 205 Myr
isochrone arguing for their common age. From our model, we determine a value of
the projection factor of p = 1.37 +/- 0.07 for the Cepheid in the
OGLE-LMC562.05.9009 system. This is the second Cepheid for which we could
measure its p-factor with high precision directly from the analysis of an
eclipsing binary system, which represents an important contribution towards a
better calibration of Baade-Wesselink methods of distance determination for
Cepheids.Comment: Accepted to be published in Ap