595 research outputs found

    On the forward-backward charge asymmetry in e+e- -annihilation into hadrons at high energies

    Full text link
    The forward-backward asymmetry in e+ e- annihilation into a quark-antiquark pair is considered in the double-logarithmic approximation at energies much higher than the masses of the weak bosons. It is shown that after accounting to all orders for the exchange of virtual photons and W, Z -bosons one is lead to the following effect (asymmetry): quarks with positive electric charge (e.g. u, \bar{d}) tend to move in the e+ - direction whereas quarks with negative charges (e.g. d, \bar{u}) tend to move in the e- - direction. The value of the asymmetry grows with increasing energy when the produced quarks are within a cone with opening angle, in the cmf, \theta_0\sim 2M_Z/\sqrt{s} around the e+e- -beam. Outside this cone, at \theta_0 << \theta << 1, the asymmetry is inversely proportional to \theta .Comment: 17 Pages, 2 Tables, 4 Figures. Hadronization effects to the asymmetry are considered with more detail

    Spin Diffusion and Relaxation in a Nonuniform Magnetic Field

    Full text link
    We consider a quasiclassical model that allows us to simulate the process of spin diffusion and relaxation in the presence of a highly nonuniform magnetic field. The energy of the slow relaxing spins flows to the fast relaxing spins due to the dipole-dipole interaction between the spins. The magnetic field gradient suppresses spin diffusion and increases the overall relaxation time in the system. The results of our numerical simulations are in a good agreement with the available experimental data.Comment: 11 pages and 6 figure

    Production of a pion in association with a high-Q2 dilepton pair in antiproton-proton annihilation at GSI-FAIR

    Full text link
    We evaluate the cross section for anti-p p -> l+ l- pi0 in the forward direction and for large lepton pair invariant mass. In this kinematical region, the leading-twist amplitude factorises into a short-distance matrix element, long-distance dominated antiproton Distribution Amplitudes and proton to pion Transition Distribution Amplitudes (TDA). Using a modelling inspired from the chiral limit for these TDAs, we obtain a first estimate of this cross section, thus demonstrating that this process can be measured at GSI-FAIR.Comment: Latex, 5 pages, 3 figure

    Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Full text link
    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from the fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 deg C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power -- this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics

    Comment on "The Tropospheric Land-Sea Warming Contrast as the Driver of Tropical Sea Level Pressure Changes" by Bayr and Dommenget

    Full text link
    T Bayr and D Dommenget [J. Climate 26 (2013) 1387] proposed a model of temperature-driven air redistribution to quantify the ratio between changes of sea level pressure psp_s and mean tropospheric temperature TaT_a in the tropics. This model assumes that the height of the tropical troposphere is isobaric. Here problems with this model are identified. A revised relationship between psp_s and TaT_a is derived governed by two parameters -- the isobaric and isothermal heights -- rather than just one. Further insight is provided by the model of R S Lindzen and S Nigam [J. Atmos. Sci. 44 (1987) 2418], which was the first to use the concept of isobaric height to relate tropical psp_s to air temperature, and did this by assuming that isobaric height is always around 3 km and isothermal height is likewise near constant. Observational data, presented here, show that neither of these heights is spatially universal nor do their mean values match previous assumptions. Analyses show that the ratio of the long-term changes in psp_s and TaT_a associated with land-sea temperature contrasts in a warming climate -- the focus of Bayr and Dommenget [2013] -- is in fact determined by the corresponding ratio of spatial differences in the annual mean psp_s and TaT_a. The latter ratio, reflecting lower pressure at higher temperature in the tropics, is dominated by meridional pressure and temperature differences rather than by land-sea contrasts. Considerations of isobaric heights are shown to be unable to predict either spatial or temporal variation in psp_s. As noted by Bayr and Dommenget [2013], the role of moisture dynamics in generating sea level pressure variation remains in need of further theoretical investigations.Comment: 26 pages, 11 figures. arXiv admin note: text overlap with arXiv:1404.101

    Formation of ions by high energy photons

    Get PDF
    We calculate the electron energy spectrum of ionization by a high energy photon, accompanied by creation of electron-positron pair. The total cross section of the process is also obtained. The asymptotics of the cross section does not depend on the photon energies. At the photon energies exceeding a certain value ω0\omega_0 this appeares to to be the dominant mechanism of formation of the ions. The dependence of ω0\omega_0 on the value of nuclear charge is obtained. Our results are consistent with experimental data.Comment: 16 pages, 6 figure

    Heat engines and heat pumps in a hydrostatic atmosphere: How surface pressure and temperature constrain wind power output and circulation cell size

    Full text link
    The kinetic energy budget of the atmosphere's meridional circulation cells is analytically assessed. In the upper atmosphere kinetic energy generation grows with increasing surface temperature difference \$\Delta T_s\$ between the cold and warm ends of a circulation cell; in the lower atmosphere it declines. A requirement that kinetic energy generation is positive in the lower atmosphere limits the poleward cell extension \$L\$ of Hadley cells via a relationship between \$\Delta T_s\$ and surface pressure difference \$\Delta p_s\$: an upper limit exists when \$\Delta p_s\$ does not grow with increasing \$\Delta T_s\$. This pattern is demonstrated here using monthly data from MERRA re-analysis. Kinetic energy generation along air streamlines in the boundary layer does not exceed \$40\$~J~mol\$^{-1}\$; it declines with growing \$L\$ and reaches zero for the largest observed \$L\$ at 2~km height. The limited meridional cell size necessitates the appearance of heat pumps -- circulation cells with negative work output where the low-level air moves towards colder areas. These cells consume the positive work output of the heat engines -- cells where the low-level air moves towards the warmer areas -- and can in theory drive the global efficiency of atmospheric circulation down to zero. Relative contributions of \$\Delta p_s\$ and \$\Delta T_s\$ to kinetic energy generation are evaluated: \$\Delta T_s\$ dominates in the upper atmosphere, while \$\Delta p_s\$ dominates in the lower. Analysis and empirical evidence indicate that the net kinetic power output on Earth is dominated by surface pressure gradients, with minor net kinetic energy generation in the upper atmosphere. The role of condensation in generating surface pressure gradients is discussed.Comment: 26 pages, 9 figures, 2 tables; re-organized presentation, more discussion and a new figure (Fig. 4) added; in Fig. 3 the previously invisible dots (observations) can now be see

    Enhancement of the electric dipole moment of the electron in the YbF molecule

    Full text link
    We calculate an effective electric field on the unpaired electron in the YbF molecule. This field determines sensitivity of the molecular experiment to the electric dipole moment of the electron. We use experimental value of the spin-doubling constant to estimate the admixture of the configuration with the hole in the 4f-shell of Ytterbium to the ground state of the molecule. This admixture reduces the field by 7%. Our value for the effictive field is 5.1 a.u. = 2.5 10^{10} V/cm.Comment: 5 pages, LATEX, uses revtex.st
    • …
    corecore