823 research outputs found

    Scintillation reduction for combined Gaussian-vortex beam propagating through turbulent atmosphere

    Full text link
    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams (PCBs), including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analyzed. A method for significantly reducing the SI, by averaging the signal at the detector over a set of PCBs, is described. This novel method is to generate the PCBs by combining two laser beams - Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the SI is effectively suppressed without any high-frequency modulators.Comment: 13 pages, 8 figure

    Scaling the neutral atom Rydberg gate quantum computer by collective encoding in Holmium atoms

    Full text link
    We discuss a method for scaling a neutral atom Rydberg gate quantum processor to a large number of qubits. Limits are derived showing that the number of qubits that can be directly connected by entangling gates with errors at the 10310^{-3} level using long range Rydberg interactions between sites in an optical lattice, without mechanical motion or swap chains, is about 500 in two dimensions and 7500 in three dimensions. A scaling factor of 60 at a smaller number of sites can be obtained using collective register encoding in the hyperfine ground states of the rare earth atom Holmium. We present a detailed analysis of operation of the 60 qubit register in Holmium. Combining a lattice of multi-qubit ensembles with collective encoding results in a feasible design for a 1000 qubit fully connected quantum processor.Comment: 6 figure

    Reduction of Magnetic Noise in Magnetic Resonance Force Microscopy

    Full text link
    We study the opportunity to reduce a magnetic noise produced by a uniform cantilever with a ferromagnetic particle in magnetic resonance force microscopy (MRFM) applications. We demonstrate theoretically a significant reduction of magnetic noise and the corresponding increase of the MRFM relaxation time using a nonuniform cantilever

    Spin Diffusion and Relaxation in a Nonuniform Magnetic Field

    Full text link
    We consider a quasiclassical model that allows us to simulate the process of spin diffusion and relaxation in the presence of a highly nonuniform magnetic field. The energy of the slow relaxing spins flows to the fast relaxing spins due to the dipole-dipole interaction between the spins. The magnetic field gradient suppresses spin diffusion and increases the overall relaxation time in the system. The results of our numerical simulations are in a good agreement with the available experimental data.Comment: 11 pages and 6 figure

    Regular and Random Magnetic Resonance Force Microscopy Signal with a Cantilever Oscillating Parallel to a Sample Surface

    Full text link
    We study theoretically the magnetic resonance force microscopy (MRFM) in oscillating cantilever-driven adiabatic reversals (OSCAR) technique, for the case when the cantilever tip oscillates parallel to the surface of a sample. The main contribution to the MRFM signal is associated with a part of the resonance slice near the surface of the sample. The regular (approximately exponential) decay of the MRFM signal is followed by the non-dissipating random signal. The Fourier spectrum of the random signal has a characteristic peak which can be used for the identification of the signal.Comment: 9 pages, 5 figure

    Beam Wandering in the Atmosphere: The Effect of Partial Coherence

    Full text link
    The effect of a random phase screen on laser beam wander in a turbulent atmosphere is studied theoretically. The method of photon distribution function is used to describe the photon kinetics of both weak and strong turbulence. By bringing together analytical and numerical calculations, we have obtained the variance of beam centroid deflections caused by scattering on turbulent eddies. It is shown that an artificial distortion of the initial coherence of the radiation can be used to decrease the wandering effect. The physical mechanism responsible for this reduction and applicability of our approach are discussed.Comment: 16 pages, 5 figure
    corecore