24 research outputs found

    QED Effects in Heavy Few-Electron Ions

    Full text link
    Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.Comment: 28 pages, 6 tables, 5 figure

    Baikal-GVD: cascades

    No full text
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode obtained in 2015 and 2016

    Baikal-GVD: cascades

    Get PDF
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-megaton subarrays (clusters) and is designed for the detection of astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. The design of Baikal-GVD allows one to search for astrophysical neutrinos with flux values measured by IceCube already at early phases of the array construction. We present here preliminary results of the search for high-energy neutrinos via the cascade mode obtained in 2015 and 2016

    Time calibration of the neutrino telescope Baikal-GVD

    Get PDF
    Baikal-GVD is a cubic-kilometer scale neutrino telescope, which is currently under construction in Lake Baikal. Baikal-GVD is an array of optical modules arranged in clusters. The first cluster of the array has been deployed and commissioned in April 2015. To date, Baikal-GVD consists of 3 clusters with 864 optical modules. One of the vital conditions for optimal energy, position and direction reconstruction of the detected particles is the time calibration of the detector. In this article, we describe calibration equipment and methods used in Baikal-GVD and demonstrate the accuracy of the calibration procedures

    Time calibration of the neutrino telescope Baikal-GVD

    No full text
    Baikal-GVD is a cubic-kilometer scale neutrino telescope, which is currently under construction in Lake Baikal. Baikal-GVD is an array of optical modules arranged in clusters. The first cluster of the array has been deployed and commissioned in April 2015. To date, Baikal-GVD consists of 3 clusters with 864 optical modules. One of the vital conditions for optimal energy, position and direction reconstruction of the detected particles is the time calibration of the detector. In this article, we describe calibration equipment and methods used in Baikal-GVD and demonstrate the accuracy of the calibration procedures
    corecore