22 research outputs found

    Immunomodulatory properties of carvone inhalation and Its effects on contextual fear memory in mice

    Get PDF
    A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1ÎČ, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-Îł. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases

    Enhancement of CD4 and CD8 immunity by anti-CD137 (4-1BB) monoclonal antibodies during hepatitis C vaccination with recombinant adenovirus

    Get PDF
    The induction of protective or therapeutic cellular immunity against hepatitis C virus (HCV) is a difficult goal. In a previous work we showed that immunization with a recombinant adenovirus encoding HCV-NS3 (RAdNS3) could partially protect mice from challenge with a vaccinia virus encoding HCV antigens. We sought to investigate whether systemic administration of an immunostimulatory monoclonal antibody directed against the lymphocyte surface molecule CD137 could enhance the immunity elicited by RAdNS3. It was found that treatment with anti-CD137 mAb after the administration of a suboptimal dose of RAdNS3 enhanced cytotoxic and T helper cell responses against HCV NS3. Importantly, the ability of RAdNS3 to induce protective immunity against challenge with a recombinant vaccinia virus expressing HCV proteins was markedly augmented. Thus, combination of immunostimulatory anti-CD137 mAb with recombinant adenoviruses expressing HCV proteins might be useful in strategies of immunization against HCV

    A fusion protein between streptavidin and the endogenous TLR4 ligand EDA targets biotinylated antigens to dendritic cells and induces T cell responses in vivo

    Get PDF
    The development of tools for efficient targeting of antigens to antigen presenting cells is of great importance for vaccine development. We have previously shown that fusion proteins containing antigens fused to the extra domain A from fibronectin (EDA), an endogenous TLR4 ligand, which targets antigens to TLR4-expressing dendritic cells (DC), are highly immunogenic. To facilitate the procedure of joining EDA to any antigen of choice, we have prepared the fusion protein EDAvidin by linking EDA to the N terminus of streptavidin, allowing its conjugation with biotinylated antigens. We found that EDAvidin, as streptavidin, forms tetramers and binds biotin or biotinylated proteins with a ~ 2.6 × 10−14 mol/L. EDAvidin favours the uptake of biotinylated green fluorescent protein by DC. Moreover, EDAvidin retains the proinflammatory properties of EDA, inducing NF-ÎșÎČ by TLR4-expressing cells, as well as the production of TNF-α by the human monocyte cell line THP1 and IL-12 by DC. More importantly, immunization of mice with EDAvidin conjugated with the biotinylated nonstructural NS3 protein from hepatitis C virus induces a strong anti-NS3 T cell immune response. These results open a new way to use the EDA-based delivery tool to target any antigen of choice to DC for vaccination against infectious diseases and cancer

    Local delivery of optimized nanobodies targeting the PD-1/PD-L1 axis with a self-amplifying RNA viral vector induces potent antitumor responses

    Get PDF
    Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for antiPD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect

    Short-term local expression of a PD-L1 blocking antibody from a self-replicating RNA vector induces potent antitumor responses

    Get PDF
    Immune checkpoint blockade has shown anti-cancer efficacy, but requires systemic administration of monoclonal antibodies (mAbs), often leading to adverse effects. To avoid toxicity, mAbs could be expressed locally in tumors. We developed adeno-associated virus (AAV) and Semliki Forest virus (SFV) vectors expressing anti-programmed death ligand 1 (aPDL1) mAb. When injected intratumorally in MC38 tumors, both viral vectors led to similar local mAb expression at 24 h, diminishing quickly in SFV-aPDL1-treated tumors. However, SFV-aPDL1 induced >40% complete regressions and was superior to AAV-aPDL1, as well as to aPDL1 mAb given systemically or locally. SFV-aPDL1 induced abscopal effects and was also efficacious against B16-ovalbumin (OVA). The higher SFV-aPDL1 antitumor activity could be related to local upregulation of interferon-stimulated genes because of SFV RNA replication. This was confirmed by combining local SFV-LacZ administration and systemic aPDL1 mAb, which provided higher antitumor effects than each separated agent. SFVaPDL1 promoted tumor-specific CD8 T cells infiltration in both tumor models. In MC38, SFV-aPDL1 upregulated co-stimulatory markers (CD137/OX40) in tumor CD8 T cells, and its combination with anti-CD137 mAb showed more pronounced antitumor effects than each single agent. These results indicate that local transient expression of immunomodulatory mAbs using non-propagative RNA vectors inducing type I interferon (IFN-I) responses represents a potent and

    Searching for peptide inhibitors of T regulatory cell activity by targeting specific domains of FOXP3 transcription factor

    No full text
    (1) Background: The ability of cancer cells to evade the immune system is due in part to their capacity to induce and recruit T regulatory cells (Tregs) to the tumor microenvironment. Strategies proposed to improve antitumor immunity by depleting Tregs generally lack specificity and raise the possibility of autoimmunity. Therefore, we propose to control Tregs by their functional inactivation rather than depletion. Tregs are characterized by the expression of the Forkhead box protein 3 (FOXP3) transcription factor, which is considered their "master regulator". Its interaction with DNA is assisted primarily by its interaction with other proteins in the so-called "Foxp3 interactome", which elicits much of the characteristic Treg cell transcriptional signature. We speculated that the disruption of such a protein complex by using synthetic peptides able to bind Foxp3 might have an impact on the functionality of Treg cells and thus have a therapeutic potential in cancer treatment. (2) Methods: By using a phage-displayed peptide library, or short synthetic peptides encompassing Foxp3 fragments, or by studying the crystal structure of the Foxp3:NFAT complex, we have identified a series of peptides that are able to bind Foxp3 and inhibit Treg activity. (3) Results: We identified some peptides encompassing fragments of the leuzin zipper or the C terminal domain of Foxp3 with the capacity to inhibit Treg activity in vitro. The acetylation/amidation of linear peptides, head-to-tail cyclization, the incorporation of non-natural aminoacids, or the incorporation of cell-penetrating peptide motifs increased in some cases the Foxp3 binding capacity and Treg inhibitory activity of the identified peptides. Some of them have shown antitumoral activity in vivo. (4) Conclusions: Synthetic peptides constitute an alternative to inhibit Foxp3 protein-protein interactions intracellularly and impair Treg immunosuppressive activity. These peptides might be considered as potential hit compounds on the design of new immunotherapeutic approaches against cancer

    Searching for peptide inhibitors of T regulatory cell activity by targeting specific domains of FOXP3 transcription factor

    Get PDF
    (1) Background: The ability of cancer cells to evade the immune system is due in part to their capacity to induce and recruit T regulatory cells (Tregs) to the tumor microenvironment. Strategies proposed to improve antitumor immunity by depleting Tregs generally lack specificity and raise the possibility of autoimmunity. Therefore, we propose to control Tregs by their functional inactivation rather than depletion. Tregs are characterized by the expression of the Forkhead box protein 3 (FOXP3) transcription factor, which is considered their "master regulator". Its interaction with DNA is assisted primarily by its interaction with other proteins in the so-called "Foxp3 interactome", which elicits much of the characteristic Treg cell transcriptional signature. We speculated that the disruption of such a protein complex by using synthetic peptides able to bind Foxp3 might have an impact on the functionality of Treg cells and thus have a therapeutic potential in cancer treatment. (2) Methods: By using a phage-displayed peptide library, or short synthetic peptides encompassing Foxp3 fragments, or by studying the crystal structure of the Foxp3:NFAT complex, we have identified a series of peptides that are able to bind Foxp3 and inhibit Treg activity. (3) Results: We identified some peptides encompassing fragments of the leuzin zipper or the C terminal domain of Foxp3 with the capacity to inhibit Treg activity in vitro. The acetylation/amidation of linear peptides, head-to-tail cyclization, the incorporation of non-natural aminoacids, or the incorporation of cell-penetrating peptide motifs increased in some cases the Foxp3 binding capacity and Treg inhibitory activity of the identified peptides. Some of them have shown antitumoral activity in vivo. (4) Conclusions: Synthetic peptides constitute an alternative to inhibit Foxp3 protein-protein interactions intracellularly and impair Treg immunosuppressive activity. These peptides might be considered as potential hit compounds on the design of new immunotherapeutic approaches against cancer

    Immunization against hepatitis C virus with a fusion protein containing the extra domain A from fibronectin and the hepatitis C virus NS3 protein

    No full text
    BACKGROUND/AIMS: Vaccination strategies able to induce strong T-cell responses might contribute to eradicate hepatitis C virus (HCV) infection. We previously demonstrated that fusion of an antigen to the extra domain A from fibronectin (EDA) targets the antigen to TLR4-expressing dendritic cells (DC) and improves its immunogenicity. Here, we studied if fusion of EDA with the non-structural HCV protein NS3 might constitute an effective immunogen against HCV. METHODS: Recombinant NS3 and the fusion protein EDA-NS3 were produced and purified from E. coli, and tested in vitro for their capacity to activate maturation of DC and to favour antigen presentation. HHD transgenic mice expressing the human HLA-A2 molecule were immunized with recombinant proteins in the absence or presence of poly(I:C) and anti-CD40 agonistic antibodies and responses elicited by vaccination were tested in vitro, and in vivo, by their capacity to downregulate intrahepatic expression of HCV-NS3 RNA. RESULTS: EDA-NS3, but not NS3 alone, upregulated the expression of maturation markers, as well as Delta-like 1 and Delta-like 4 Notch ligands in DC and induced the production of IL-12. Mice immunized with EDA-NS3 had strong and long lasting NS3-specific CD4+ and CD8+ T-cell responses and, in combination with poly(I:C) and anti-CD40, downregulated intrahepatic expression of HCV-NS3 RNA. CONCLUSIONS: Recombinant EDA-NS3 may be considered for the development of vaccines against HCV infection

    Immunomodulatory properties of carvone inhalation and Its effects on contextual fear memory in mice

    No full text
    A complex network of interactions exists between the immune, the olfactory, and the central nervous system (CNS). Inhalation of different fragrances can affect immunological reactions in response to an antigen but also may have effects on the CNS and cognitive activity. We performed an exploratory study of the immunomodulatory ability of a series of compounds representing each of the 10 odor categories or clusters described previously. We evaluated the impact of each particular odor on the immune response after immunization with the model antigen ovalbumin in combination with the TLR3 agonist poly I:C. We found that some odors behave as immunostimulatory agents, whereas others might be considered as potential immunosuppressant odors. Interestingly, the immunomodulatory capacity was, in some cases, strain-specific. In particular, one of the fragrances, carvone, was found to be immunostimulatory in BALB/c mice and immunosuppressive in C57BL/6J mice, facilitating or impairing viral clearance, respectively, in a model of a viral infection with a recombinant adenovirus. Importantly, inhalation of the odor improved the memory capacity in BALB/c mice in a fear-conditioning test, while it impaired this same capacity in C57BL/6J mice. The improvement in memory capacity in BALB/c was associated with higher CD3+ T cell infiltration into the hippocampus and increased local expression of mRNA coding for IL-1ÎČ, TNF-α, and IL-6 cytokines. In contrast, the memory impairment in C57BL/6 was associated with a reduction in CD3 numbers and an increase in IFN-Îł. These data suggest an association between the immunomodulatory capacity of smells and their impact on the cognitive functions of the animals. These results highlight the potential of studying odors as therapeutic agents for CNS-related diseases

    Immunization against hepatitis C virus with a fusion protein containing the extra domain A from fibronectin and the hepatitis C virus NS3 protein

    No full text
    BACKGROUND/AIMS: Vaccination strategies able to induce strong T-cell responses might contribute to eradicate hepatitis C virus (HCV) infection. We previously demonstrated that fusion of an antigen to the extra domain A from fibronectin (EDA) targets the antigen to TLR4-expressing dendritic cells (DC) and improves its immunogenicity. Here, we studied if fusion of EDA with the non-structural HCV protein NS3 might constitute an effective immunogen against HCV. METHODS: Recombinant NS3 and the fusion protein EDA-NS3 were produced and purified from E. coli, and tested in vitro for their capacity to activate maturation of DC and to favour antigen presentation. HHD transgenic mice expressing the human HLA-A2 molecule were immunized with recombinant proteins in the absence or presence of poly(I:C) and anti-CD40 agonistic antibodies and responses elicited by vaccination were tested in vitro, and in vivo, by their capacity to downregulate intrahepatic expression of HCV-NS3 RNA. RESULTS: EDA-NS3, but not NS3 alone, upregulated the expression of maturation markers, as well as Delta-like 1 and Delta-like 4 Notch ligands in DC and induced the production of IL-12. Mice immunized with EDA-NS3 had strong and long lasting NS3-specific CD4+ and CD8+ T-cell responses and, in combination with poly(I:C) and anti-CD40, downregulated intrahepatic expression of HCV-NS3 RNA. CONCLUSIONS: Recombinant EDA-NS3 may be considered for the development of vaccines against HCV infection
    corecore