12 research outputs found

    Mapping the 5′ and the 3′ ends of Tetrahymena thermophila

    No full text

    Cloning, Localization, and Axonemal Function of Tetrahymena Centrin

    No full text
    Centrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron. It has > 80% homology to other centrins and high homology to Tetrahymena EF hand proteins calmodulin, TCBP23, and TCBP25. Specific cellular localizations of the closely related Tetrahymena EF hand proteins are different from centrin. Centrin is localized to basal bodies, cortical fibers in oral apparatus and ciliary rootlets, the apical filament ring and to inner arm (14S) dynein (IAD) along the ciliary axoneme. The function of centrin in Ca(2+) control of IAD activity was explored using in vitro microtubule (MT) motility assays. Ca(2+) or the Ca(2+)-mimicking peptide CALP1, which binds EF hand proteins in the absence of Ca(2+), increased MT sliding velocity. Antibodies to centrin abrogated this increase. This is the first demonstration of a specific centrin function associated with axonemal dynein. It suggests that centrin is a key regulatory protein for Tetrahymena axonemal Ca(2+) responses, including ciliary reversal or chemotaxis

    Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans

    No full text
    We have cloned the H1 histone gene (hhoA) of Aspergillus nidulans. This single-copy gene codes for a typical linker histone with one central globular domain. The open reading frame is interrupted by six introns. The position of the first intron is identical to that of introns found in some plant histones. An H1–GFP fusion shows exclusive nuclear localization, whereas chromosomal localization can be observed during condensation at mitosis. Surprisingly, the deletion of hhoA results in no obvious phenotype. The nucleosomal repeat length and susceptibility to micrococcal nuclease digestion of A. nidulans chromatin are unchanged in the deleted strain. The nucleosomal organization of a number of promoters, including in particular the strictly regulated niiA-niaD bidirectional promoter is not affected.This work was supported by EC grant BIO2-CT93-0147, the CNRS and the Université Paris Sud. M.I.M-P. has been the recipient of CE fellowship BIO-CT-94-8102 and a fellowship from the Fondation pour la Recherche Médicale. R.G. has been the recipient of CE fellowship BIO4-CT-96-5010Peer reviewe
    corecore