6 research outputs found

    Comparative Electronic Structures of the Chiral Helimagnets Cr1/3NbS2 and Cr1/3TaS2

    Full text link
    Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Here, we carry out a comparative study of the electronic structures of Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2 and connect this result to bonding and orbital overlap in these materials. We also unambiguously distinguish exchange splitting from surface termination effects by studying the dependence of their photoemission spectra on polarization, temperature, and beam size. We find strong evidence that hybridization between intercalant and host lattice electronic states mediates the magnetic exchange interactions in these materials, suggesting that band engineering is a route toward tuning their spin textures. Overall, these results underscore how the modular nature of intercalated transition metal dichalcogenides translates variation in composition and electronic structure to complex magnetism.Comment: 46 pages, 18 figures, 5 table

    Nature of the current-induced insulator-to-metal transition in Ca2_2RuO4_4 as revealed by transport-ARPES

    Full text link
    The Mott insulator Ca2_2RuO4_4 exhibits a rare insulator-to-metal transition (IMT) induced by DC current. While structural changes associated with this transition have been tracked by neutron diffraction, Raman scattering, and x-ray spectroscopy, work on elucidating the response of the electronic degrees of freedom is still in progress. Here we unveil the current-induced modifications of the electronic states of Ca2_2RuO4_4 by employing angle-resolved photoemission spectroscopy (ARPES) in conjunction with four-probe transport. Two main effects emerge: a clear reduction of the Mott gap and a modification in the dispersion of the Ru-bands. The changes in dispersion occur exclusively along the XMXM high-symmetry direction, parallel to the bb-axis where the greatest in-plane lattice change occurs. These experimental observations are reflected in dynamical mean-field theory (DMFT) calculations simulated exclusively from the current-induced lattice constants, indicating a current driven structural transition as the primary mechanism of the IMT. Furthermore, we demonstrate this phase is distinct from the high-temperature zero-current metallic phase. Our results provide insight into the elusive nature of the current-induced IMT of Ca2_2RuO4_4 and advance the challenging, yet powerful, technique of transport-ARPES.Comment: 8 pages, 4 figure

    Three-Dimensional Flat Bands and Dirac Cones in a Pyrochlore Superconductor

    Full text link
    Emergent phases often appear when the electronic kinetic energy is comparable to the Coulomb interactions. One approach to seek material systems as hosts of such emergent phases is to realize localization of electronic wavefunctions due to the geometric frustration inherent in the crystal structure, resulting in flat electronic bands. Recently, such efforts have found a wide range of exotic phases in the two-dimensional kagome lattice, including magnetic order, time-reversal symmetry breaking charge order, nematicity, and superconductivity. However, the interlayer coupling of the kagome layers disrupts the destructive interference needed to completely quench the kinetic energy. Here we experimentally demonstrate that an interwoven kagome network--a pyrochlore lattice--can host a three dimensional (3D) localization of electron wavefunctions. In particular, through a combination of angle-resolved photoemission spectroscopy, fundamental lattice model and density functional theory (DFT) calculations, we present the novel electronic structure of a pyrochlore superconductor, CeRu2_2. We find striking flat bands with bandwidths smaller than 0.03 eV in all directions--an order of magnitude smaller than that of kagome systems. We further find 3D gapless Dirac cones predicted originally by theory in the diamond lattice space group with nonsymmorphic symmetry. Our work establishes the pyrochlore structure as a promising lattice platform to realize and tune novel emergent phases intertwining topology and many-body interactions.Comment: 12 pages, 3 figure

    Kramers nodal lines and Weyl fermions in SmAlSi

    No full text
    Abstract Kramers nodal lines (KNLs) have recently been proposed theoretically as a special type of Weyl line degeneracy connecting time-reversal invariant momenta. KNLs are robust to spin orbit coupling and are inherent to all non-centrosymmetric achiral crystal structures, leading to unusual spin, magneto-electric, and optical properties. However, their existence in in real quantum materials has not been experimentally established. Here we gather the experimental evidence pointing at the presence of KNLs in SmAlSi, a non-centrosymmetric metal that develops incommensurate spin density wave order at low temperature. Using angle-resolved photoemission spectroscopy, density functional theory calculations, and magneto-transport methods, we provide evidence suggesting the presence of KNLs, together with observing Weyl fermions under the broken inversion symmetry in the paramagnetic phase of SmAlSi. We discuss the nesting possibilities regarding the emergent magnetic orders in SmAlSi. Our results provide a solid basis of experimental observations for exploring correlated topology in SmAlS
    corecore