37 research outputs found
Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells In Vivo
Early detection of tumors can significantly improve the outcome of tumor treatment. One of the most frequently asked questions in cancer imaging is how many cells can be detected non-invasively in a live animal. Although many factors limit such detection, increasing the light emission from cells is one of the most effective ways of overcoming these limitations. Here, we describe development and utilization of a lentiviral vector containing enhanced firefly luciferase (luc2) gene. The resulting single cell clones of the mouse mammary gland tumor (4T1-luc2) showed stable light emission in the range of 10,000 photons/sec/cell. In some cases individual 4T1-luc2 cells inserted under the skin of a nu/nu mouse could be detected non-invasively using a cooled CCD camera in some cases. In addition, we showed that only few cells are needed to develop tumors in these mice and tumor progression can be monitored right after the cells are implanted. Significantly higher luciferase activity in these cells allowed us to detect micrometastases in both, syngeneic Balb/c and nu/nu mice
Mutation and deletion analysis of GFRα-1, encoding the co-receptor for the GDNF/RET complex, in human brain tumours
Glial cell line-derived neurotrophic factor (GDNF) plays a key role in the control of vertebrate neuron survival and differentiation in both the central and peripheral nervous systems. GDNF preferentially binds to GFRα-1 which then interacts with the receptor tyrosine kinase RET. We investigated a panel of 36 independent cases of mainly advanced sporadic brain tumours for the presence of mutations in GDNF and GFRα-1. No mutations were found in the coding region of GDNF. We identified six previously described GFRα-1 polymorphisms, two of which lead to an amino acid change. In 15 of 36 brain tumours, all polymorphic variants appeared to be homozygous. Of these 15 tumours, one also had a rare, apparently homozygous, sequence variant at codon 361. Because of the rarity of the combination of homozygous sequence variants, analysis for hemizygous deletion was pursued in the 15 samples and loss of heterozygosity was found in 11 tumours. Our data suggest that intragenic point mutations of GDNF or GFRα-1 are not a common aetiologic event in brain tumours. However, either deletion of GFRα-1 and/or nearby genes may contribute to the pathogenesis of these tumours
In Vitro Amplification of Misfolded Prion Protein Using Lysate of Cultured Cells
Protein misfolding cyclic amplification (PMCA) recapitulates the prion protein (PrP) conversion process under cell-free conditions. PMCA was initially established with brain material and then with further simplified constituents such as partially purified and recombinant PrP. However, availability of brain material from some species or brain material from animals with certain mutations or polymorphisms within the PrP gene is often limited. Moreover, preparation of native PrP from mammalian cells and tissues, as well as recombinant PrP from bacterial cells, involves time-consuming purification steps. To establish a convenient and versatile PMCA procedure unrestricted to the availability of substrate sources, we attempted to conduct PMCA with the lysate of cells that express cellular PrP (PrPC). PrPSc was efficiently amplified with lysate of rabbit kidney epithelial RK13 cells stably transfected with the mouse or Syrian hamster PrP gene. Furthermore, PMCA was also successful with lysate of other established cell lines of neuronal or non-neuronal origins. Together with the data showing that the abundance of PrPC in cell lysate was a critical factor to drive efficient PrPSc amplification, our results demonstrate that cell lysate in which PrPC is present abundantly serves as an excellent substrate source for PMCA