113 research outputs found
Recommended from our members
Spectral transitions for the square Fibonacci Hamiltonian
We study the spectrum and the density of states measure of the square Fibonacci Hamiltonian. We describe where the transitions from positive-measure to zero-measure spectrum and from absolutely continuous to singular density of states measure occur. This shows in particular that for almost every parameter from some open set, a positive-measure spectrum and a singular density of states measure coexist. This provides the first physically relevant example exhibiting this phenomenon
Recommended from our members
Multidimensional Schrödinger operators whose spectrum features a half-line and a Cantor set
We construct multidimensional Schrödinger operators with a spectrum that has no gaps at high energies and that is nowhere dense at low energies. This gives the first example for which this widely expected topological structure of the spectrum in the class of uniformly recurrent Schrödinger operators, namely the coexistence of a half-line and a Cantor-type structure, can be confirmed. Our construction uses Schrödinger operators with separable potentials that decompose into one-dimensional potentials generated by the Fibonacci sequence and relies on the study of such operators via the trace map and the Fricke-Vogt invariant. To show that the spectrum contains a half-line, we prove an abstract Bethe–Sommerfeld criterion for sums of Cantor sets which may be of independent interest
On stochastic sea of the standard map
Consider a generic one-parameter unfolding of a homoclinic tangency of an
area preserving surface diffeomorphism. We show that for many parameters
(residual subset in an open set approaching the critical value) the
corresponding diffeomorphism has a transitive invariant set of full
Hausdorff dimension. The set is a topological limit of hyperbolic sets
and is accumulated by elliptic islands.
As an application we prove that stochastic sea of the standard map has full
Hausdorff dimension for sufficiently large topologically generic parameters.Comment: 36 pages, 5 figure
Simultaneous Continuation of Infinitely Many Sinks Near a Quadratic Homoclinic Tangency
We prove that the diffeomorphisms on surfaces, exhibiting infinitely
many sinksnear the generic unfolding of a quadratic homoclinic tangency of a
dissipative saddle, can be perturbed along an infinite dimensional manifold of
diffeomorphisms such that infinitely many sinks persist simultaneously.
On the other hand, if they are perturbed along one-parameter families that
unfold generically the quadratic tangencies, then at most a finite number of
those sinks have continuation
Almost Sure Frequency Independence of the Dimension of the Spectrum of Sturmian Hamiltonians
We consider the spectrum of discrete Schr\"odinger operators with Sturmian
potentials and show that for sufficiently large coupling, its Hausdorff
dimension and its upper box counting dimension are the same for Lebesgue almost
every value of the frequency.Comment: 12 pages, to appear in Commun. Math. Phy
Non-hyperbolic ergodic measures with large support
We prove that there is a residual subset in
such that, for every , any homoclinic class of with
invariant one dimensional central bundle containing saddles of different
indices (i.e. with different dimensions of the stable invariant manifold)
coincides with the support of some invariant ergodic non-hyperbolic (one of the
Lyapunov exponents is equal to zero) measure of
The Fractal Dimension of the Spectrum of the Fibonacci Hamiltonian
We study the spectrum of the Fibonacci Hamiltonian and prove upper and lower
bounds for its fractal dimension in the large coupling regime. These bounds
show that as , converges to an explicit constant (). We also discuss
consequences of these results for the rate of propagation of a wavepacket that
evolves according to Schr\"odinger dynamics generated by the Fibonacci
Hamiltonian.Comment: 23 page
Dynamics of some piecewise smooth Fermi-Ulam Models
We find a normal form which describes the high energy dynamics of a class of
piecewise smooth Fermi-Ulam ping pong models; depending on the value of a
single real parameter, the dynamics can be either hyperbolic or elliptic. In
the first case we prove that the set of orbits undergoing Fermi acceleration
has zero measure but full Hausdorff dimension. We also show that for almost
every orbit the energy eventually falls below a fixed threshold. In the second
case we prove that, generically, we have stable periodic orbits for arbitrarily
high energies, and that the set of Fermi accelerating orbits may have infinite
measure.Comment: 22 pages, 4 figure
- …