11 research outputs found

    Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments

    Get PDF
    AbstractTo better understand instream suspended sediment delivery and transformation processes, we conducted field measurements and laboratory experiments to study the natural function of spatial and temporal variation, sediment particles, stable isotopes, particle size, and aspect ratio from tributary to mainstream flows of the Sukhaya Elizovskaya River catchment at the beginning of and during snowmelt. The Sukhaya Elizovskaya River is located in the Kamchatka Peninsula of Russia and is surrounded by active volcanic territory. The study area has a range of hydrological features that determine the extreme amounts of washed sediments. Sediment transported to the river channels in volcanic mountainous terrain is believed to be strongly influenced by climate conditions, particularly when heavy precipitation and warmer climate trigger mudflows in association with the melting snow. The high porosity of the channel bottom material also leads to interactions with the surface water, causing temporal variability in the daily fluctuations in water and sediment flow. Field measurements revealed that suspended sediment behaviour and fluxes decreased along the mainstream Sukhaya Elizovskaya River from inflows from a tributary catchment located in the volcanic mountain range. In laboratory experiments, water samples collected from tributaries were mixed with those from the mainstream flow of the Sukhaya Elizovskaya River to examine the cause of debris flow and characteristics of suspended sediment in the mainstream. These findings and the geological conditions of the tributary catchments studied led us to conclude that halloysite minerals likely comprise the majority of suspended sediments and play a significant role in phosphate adsorption. The experimental results were upscaled and verified using field measurements. Our results indicate that the characteristics of suspended sediment and river discharge in the Sukhaya Elizovskaya River can be attributed primarily to the beginning of snowmelt in volcanic tributaries of the lahar valley, suggesting a significant hydrological contribution of volcanic catchments to instream suspended sediment transport. Daily fluctuations in discharge caused by snowmelt with debris flow were observed in this measurement period, in which suspended sediment concentration is ~10mg/l during nonflooding periods and ~1400mg/l when flooding occurs. The oxygen and hydrogen isotope measurements, when compared with Japan, indicated that the Kamchatka region water is relatively lightweight, incorporating the effects of topography; and the water from the beginning of the snowmelt is relatively lightweight when compared with water from the end of the snowmelt. The trend line of isotopes from the beginning of the snowmelt was defined by a slope of 6.88 (n=12; r2=0.97), significantly less than that of isotopes from the snowmelt (8.72). The sediment particles collected during the snowmelt were round in shape caused by the extreme flows and high discharge. The shape of the sediment particles collected at the beginning of the snowmelt, assumed to be fresh samples from the hillslope, was sharper caused by the relatively small discharge by moderate snowmelt. Finally, the relationship between river discharge and suspended sediment concentration was indicated. The results are compared with mountainous rivers of Japan and Malaysia. A new diagram is proposed to describe the relationship between suspended sediment concentration and river discharge

    Probability assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model

    Get PDF
    AbstractTo address many of the problems faced in hydrological engineering planning, design, and management, a detailed knowledge of flood event characteristics, such as flood peak, volume, and duration is required. Flood frequency analysis often focuses on flood peak values and provides a limited assessment of flood events. To develop effective flood management and mitigation policies, estimation of the scale of potential disasters, incorporating the effects of social factors and climate conditions, is required along with quantitative measures of flood frequency. The Japanese flood risk index, the flood disaster occurrence probability (FDOP), was established based on both natural and social factors. It represents the expectation of damage in the case of a single flood occurrence, which is estimated by integrating a physical-based approach as a Total Runoff Integrating Pathways (TRIP) model with Gumbel distribution metrics. The resulting equations are used to predict potential flood damage based on gridded Japanese data for independent variables. This approach is novel in that it targets floods based on units of events instead of a long-term trend. Moreover, the FDOP can express relative potential flood risk while considering flood damage. The significance of the present study is that both the hazard parameters (which contribute directly to flood occurrence) and vulnerability parameters (which reflect conditions of the region where the flood occurred), including residential and social characteristics, were shown quantitatively to affect flood damage. This study examined the probability of flood disaster occurrence using the TRIP model for Japan (J-TRIP), a river routing scheme that provides a digital river network covering Japan. The analysis was based on floods from 1976 to 2004 associated with flood inundation and sediment disasters. Based on these results, we estimated the probability of flood damage officially reported for the whole region of Japan at a grid interval of 0.1 degrees. The relationship between the magnitude of the rain hazard expressed as the probability of exceedance and the probability of flood damage officially reported was expressed as an exponential function by equalizing the whole region of Japan based on excess probability. Moreover, the probabilities of flood damage occurrence according to social factors and changes in climate conditions were also examined. The probability of flood damage occurrence is high, especially in regions of high population density. The results also showed the effect of the dam maintenance ratio on extreme flooding and flood damage frequency. The probability of flood damage occurrence was expected to increase during extreme weather events at the end of this century. These findings provide a sound foundation for use in catchment water resources management

    Estimation of the effects of chemically-enhanced treatment of urban sewage system based on life-cycle management

    Get PDF
    AbstractEffluent requirements have frequently been established that are more stringent than those traditionally considered possible using biological secondary treatment. We evaluated aeration energy and CO2 emissions using an inorganic polymer coagulant of polysilicato-iron (PSI) as a pre-treatment alternative to an aluminium coagulant. Use of the PSI coagulant for CO2 reduction was evaluated in terms of the effects on the quality of the treated water and overall cost effectiveness using a simplified life-cycle assessment (LCA) technique for a wastewater treatment system in an urban catchment. The water quality improvement effects of the wastewater treatment were evaluated by calculating the flux change according to the water quality characteristics in an urban catchment using a catchment simulator. The system evaluated, in an integrated manner, the quality of the treated water and the CO2 emissions from a wastewater treatment system. The effects of wastewater treatment management measures were assessed by evaluating their CO2 emissions and cost, in addition to the water quality improvement. A flocculating agent was used at a concentration close to the water quality standard, and a major effect was seen in terms of reduced aeration energy costs and CO2 emissions. Model calculations of the cost of using flocculating agents, such as polyaluminium chloride (PAC), PSI, ferric chloride, and a polymer coagulant, indicated that the most economical agent was PSI with a polymer. For a cost burden of about 200 million JPY per year, including the cost of the flocculant and of sludge disposal, the CO2 emissions could be reduced by approximately 30%. Thus, a reduced energy technology was established to optimally manage catchment wastewater

    Assessment of the historical environmental changes from a survey of local residents in an urban-rural catchment

    Get PDF
    AbstractWhen attempting to address the environmental problems of a catchment, it is important to consider changes in a long-term environmental context. However, the long-term data on the state of the environment that are required for such an examination are rarely documented. Such data collection typically requires several years of investigation and observation. In addition, as there may be a significant time lag between the occurrence of a phenomenon and its cause, subsequent environmental investigations of changing animal and plant states scaling up to 5 years may be inadequate. We conducted a long-term analysis of the environmental changes in five sub-catchments of the Nagara River, Japan, assessing a period of 30 years, using a questionnaire survey approach involving local communities. Four sub-catchments of the Yoshida River were also analyzed for comparison. In addition, we attempted to clarify the relationship between various environmental factors and the space–time response of animals and plants. The survey included eight topics: assumed information, hydrological characteristics, habitat conditions for living things, forest state, land cover conditions, river awareness, free-entry information, and respondent information. Our method also has academic significance in that it validates the environmental agent extraction technique using a questionnaire survey. Our results identify management strategies for minimizing biodiversity loss due to climate change. Forest management and human activities should be undertaken with care, and the environmental context going forward into the next century should be considered for integrated catchment management. Elsewhere, reduced greenhouse gas emissions, a much expanded network of protected areas, and/or efforts to provide corridors to ease species movements may be necessary at the global level
    corecore