110 research outputs found

    Microporous polysaccharide hemosphere absorbable hemostat use in cardiothoracic surgical procedures

    Get PDF
    BACKGROUND: Topical hemostatic agents are used to reduce bleeding and transfusion need during cardiothoracic surgery. We report our experience with Arista® AH Absorbable Hemostatic Particles (Arista® AH), a novel plant-based microporous polysaccharide hemostatic powder. METHODS: Data were retrospectively collected for patients (n = 240) that received cardiothoracic surgery at our institution from January 2009 to January 2013 with (n = 103) or without (n = 137) the use of Arista® AH. Endpoints included protamine to skin closure time (hemostasis time), cardiopulmonary bypass time, quantity of Arista® AH applied, intraoperative blood product usage, intraoperative blood loss, chest tube output 48 hours postoperatively, blood products required 48 hours postoperatively, length of stay in the intensive care unit, 30-day morbidity, and 30-day mortality. RESULTS: 240 patients (176 M: 64 F) underwent 240 cardiothoracic procedures including heart transplantation (n = 53), cardiac assist devices (n = 113), coronary artery bypass grafts (n = 20), valve procedures (n = 19), lung transplantation (n = 17), aortic dissection (n = 8), and other (n = 10). Application of Arista® AH led to significant reduction in hemostasis time versus the untreated control group (Arista® AH: 93.4 ± 41 min. vs. Control: 107.6 ± 56 min., p = 0.02). Postoperative chest tube output in the first 48 hours was also significantly reduced (Arista® AH: 1594 ± 949 mL vs. Control: 2112 ± 1437 mL, p < 0.001), as well as transfusion of packed red blood cells (Arista® AH: 2.4 ± 2.5 units vs. Control: 4.0 ± 5.1 units, p < 0.001). There was no significant difference in 30-day mortality or postoperative complications. CONCLUSION: Use of Arista® AH in complex cardiothoracic surgery resulted in a significant reduction in hemostasis time, postoperative chest tube output, and need for postoperative blood transfusion

    Ductal Plate Malformation in a Nonhuman Primate

    No full text

    Simulation in coagulation testing using rotational thromboelastometry: A fast emerging, reliable point of care technique

    No full text
    Computer simulations can come in handy to train medical personnel with necessary skills to face the clinical scenarios involving various coagulopathies. Now a days, point of care (POC) devices such as thromboelastography, Sonoclot analyzer and newly approved rotational thromboelastometry (ROTEM) with faster results to assess coagulopathies are available on bedside of patients. ROTEM is emerging as a quick, portable, and well-validated device to evaluate coagulopathy in critical care and perioperative setup. A novel platelet-aggregometry integrated module enables simultaneous analysis of platelets as well as coagulation tests on the same screen. The entire gamut of POC signature curves obtained with different coagulation defects can be learned with graphical simulations. These simulations can be a valuable strategy to elucidate latent conditions, for which simulation interventions can then be designed to mimic different clinical scenarios

    Covid-19-associated coagulopathy and inflammatory response: What do we know already and what are the knowledge gaps?

    No full text
    Patients with coronavirus disease 2019 (COVID-19) frequently experience a coagulopathy associated with a high incidence of thrombotic events leading to poor outcomes. Here, biomarkers of coagulation (such as D-dimer, fibrinogen, platelet count), inflammation (such as interleukin-6), and immunity (such as lymphocyte count) as well as clinical scoring systems (such as sequential organ failure assessment [SOFA], International Society on Thrombosis and Hemostasis disseminated intravascular coagulation [ISTH DIC], and sepsis-induced coagulopathy [SIC] score) can be helpful in predicting clinical course, need for hospital resources (such as intensive care unit [ICU] beds, intubation and ventilator therapy, and extracorporeal membrane oxygenation [ECMO]) and patient's outcome in patients with COVID-19. However, therapeutic options are actually limited to unspecific supportive therapy. Whether viscoelastic testing can provide additional value in predicting clinical course, need for hospital resources and patient's outcome or in guiding anticoagulation in COVID-19-associated coagulopathy is still incompletely understood and currently under investigation (eg, in the rotational thromboelastometry analysis and standard coagulation tests in hospitalized patients with COVID-19 [ROHOCO] study). This article summarizes what we know already about COVID-19-associated coagulopathy and-perhaps even more importantly-characterizes important knowledge gaps
    corecore