11 research outputs found

    Structure of Cryptosporidium IMP de­hydrogenase bound to an inhibitor with in vivo antiparasitic activity

    Get PDF
    Inosine 50-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 50-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications

    The Structural Basis of Cryptosporidium-Specific IMP Dehydrogenase Inhibitor Selectivity

    Get PDF
    Cryptosporidium parvum is a potential biowarfare agent, an important AIDS pathogen, and a major cause of diarrhea and malnutrition. No vaccines or effective drug treatment exist to combat Cryptosporidium infection. This parasite relies on inosine 5?-monophosphate dehydrogenase (IMPDH) to obtain guanine nucleotides, and inhibition of this enzyme blocks parasite proliferation. Here, we report the first crystal structures of CpIMPDH. These structures reveal the structural basis of inhibitor selectivity and suggest a strategy for further optimization. Using this information, we have synthesized low-nanomolar inhibitors that display 103 selectivity for the parasite enzyme over human IMPDH2

    Selective and potent urea inhibitors of Cryptosporidium parvum inosine 5’-monophosphate dehydrogenase

    Get PDF
    Cryptosporidium parvum and related species are zoonotic intracellular parasites of the intestine. Cryptosporidium is a leading cause of diarrhea in small children around the world. Infection can cause severe pathology in children and immunocompromised patients. This waterborne parasite is resistant to common methods of water treatment and therefore a prominent threat to drinking and recreation water even in countries with strong water safety systems. The drugs currently used to combat these organisms are ineffective. Genomic analysis revealed that the parasite relies solely on inosine-5?-monophosphate dehydrogenase (IMPDH) for the biosynthesis of guanine nucleotides. Herein, we report a selective urea-based inhibitor of C. parvum IMPDH (CpIMPDH) identified by high-throughput screening. We performed a SAR study of these inhibitors with some analogues exhibiting high potency (IC50 1000-fold versus human IMPDH type 2 and good stability in mouse liver microsomes. A subset of inhibitors also displayed potent antiparasitic activity in a Toxoplasma gondii model

    Phthalazinone inhibitors of inosine-5?-monophosphate dehydrogenase from Cryptosporidium parvum

    Get PDF
    Cryptosporidium parvum (Cp) is a potential biowarfare agent and major cause of diarrhea and malnutrition. This protozoan parasite relies on inosine 5?-monophosphate dehydrogenase (IMPDH) for the production of guanine nucleotides. A CpIMPDH-selective N-aryl-3,4-dihydro-3-methyl-4-oxo-1-phthalazineacetamide inhibitor was previously identified in a high throughput screening campaign. Herein we report a structure–activity relationship study for the phthalazinone-based series that resulted in the discovery of benzofuranamide analogs that exhibit low nanomolar inhibition of CpIMPDH. In addition, the antiparasitic activity of select analogs in a Toxoplasma gondii model of C. parvum infection is also presented

    Structure–activity relationship study of selective benzimidazole-based inhibitors of Cryptosporidium parvum IMPDH

    Get PDF
    Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The Cryptosporidium parvum and Cryptosporidium hominis genomes indicate that the only route to guanine nucleotides is via inosine 5?-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput screen. Here we report a structure–activity relationship study of benzimidazole-based compounds that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent antiparasitic activity in vitro

    Optimization of Benzoxazole-Based Inhibitors of Cryptosporidium parvum Inosine 5?-Monophosphate Dehydrogenase

    Get PDF
    Cryptosporidium parvum is an enteric protozoan parasite that has emerged as a major cause of diarrhea, malnutrition, and gastroenteritis and poses a potential bioterrorism threat. C. parvum synthesizes guanine nucleotides from host adenosine in a streamlined pathway that relies on inosine 5?-monophosphate dehydrogenase (IMPDH). We have previously identified several parasite-selective C. parvum IMPDH (CpIMPDH) inhibitors by high-throughput screening. In this paper, we report the structure–activity relationship (SAR) for a series of benzoxazole derivatives with many compounds demonstrating CpIMPDH IC50 values in the nanomolar range and >500-fold selectivity over human IMPDH (hIMPDH). Unlike previously reported CpIMPDH inhibitors, these compounds are competitive inhibitors versus NAD+. The SAR study reveals that pyridine and other small heteroaromatic substituents are required at the 2-position of the benzoxazole for potent inhibitory activity. In addition, several other SAR conclusions are highlighted with regard to the benzoxazole and the amide portion of the inhibitor, including preferred stereochemistry. An X-ray crystal structure of a representative E·IMP·inhibitor complex is also presented. Overall, the secondary amine derivative 15a demonstrated excellent CpIMPDH inhibitory activity (IC50 = 0.5 ± 0.1 nM) and moderate stability (t1/2 = 44 min) in mouse liver microsomes. Compound 73, the racemic version of 15a, also displayed superb antiparasitic activity in a Toxoplasma gondii strain that relies on CpIMPDH (EC50 = 20 ± 20 nM), and selectivity versus a wild-type T. gondii strain (200-fold). No toxicity was observed (LD50 > 50 ?M) against a panel of four mammalian cells lines

    Mycobacterium tuberculosis IMPDH in Complexes with Substrates, Products and Antitubercular Compounds

    Get PDF
    Tuberculosis (TB) remains a worldwide problem and the need for new drugs is increasingly more urgent with the emergence of multidrug- and extensively-drug resistant TB. Inosine 5’-monophosphate dehydrogenase 2 (IMPDH2) from Mycobacterium tuberculosis (Mtb) is an attractive drug target. The enzyme catalyzes the conversion of inosine 5’-monophosphate into xanthosine 5’-monophosphate with the concomitant reduction of NAD+ to NADH. This reaction controls flux into the guanine nucleotide pool. We report seventeen selective IMPDH inhibitors with antitubercular activity. The crystal structures of a deletion mutant of MtbIMPDH2 in the apo form and in complex with the product XMP and substrate NAD+ are determined. We also report the structures of complexes with IMP and three structurally distinct inhibitors, including two with antitubercular activity. These structures will greatly facilitate the development of MtbIMPDH2-targeted antibiotics
    corecore