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Abstract
Cryptosporidium parasites are important waterborne pathogens of both humans and animals. The
C. parvum and C. hominis genomes indicate that the only route to guanine nucleotides is via
inosine 5'-monophosphate dehydrogenase (IMPDH). Thus the inhibition of the parasite IMPDH
presents a potential strategy for treating Cryptosporidium infections. A selective benzimidazole-
based inhibitor of C. parvum IMPDH (CpIMPDH) was previously identified in a high throughput
screen. Here we report a structure-activity relationship study of benzimidazole-based compounds
that resulted in potent and selective inhibitors of CpIMPDH. Several compounds display potent
antiparasitic activity in vitro.

Cryptosporidiosis is a waterborne diarrheal disease caused by protozoan parasites of the
genus Cryptosporidium1, 2. While Cryptosporidium hominis is specific to humans, others
such as C. parvum infect humans and a wide range of animals and can be transmitted
zoonotically. Cryptosporidiosis is a major cause of malnutrition in the developing world and
can be life threatening in immunocompromised patients. Cryptosporium oocysts are resistant
to commonly employed methods of water treatment, leading to frequent outbreaks in the
developed world. In addition, oocysts are relatively easy to obtain, and therefore pose a
credible biowarfare threat. No vaccines exist for Cryptosporidium infections and the
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approved drugs are not particularly effective. Therefore, the tools currently available to
combat a massive outbreak are limited.

Like other apicomplexan parasites, Cryptosporidium is unable to synthesize purine
nucleotides de novo. Instead, Cryptosporidium relies on a highly streamlined purine salvage
pathway3–5. The parasite obtains adenosine from the host, which is converted sequentially to
AMP and IMP. The enzyme inosine 5'-monophosphate dehydrogenase (IMPDH) converts
IMP to XMP (Scheme 1). XMP is subsequently converted to GMP. Cryptosporidium does
not contain guanine salvage enzymes, so this pathway appears to be the only route to
guanine nucleotides.

Interestingly, Cryptosporidium acquired its IMPDH gene by lateral gene transfer from an ε-
proteobacterium and consequently the enzyme is highly divergent from the host
counterpart6. Thus, selective inhibition of Cryptosporidium IMPDH presents a potential
strategy for treating cryptosporidiosis with minimal effects on its mammalian host7–9. The
benzimidazole analog C was identified in a high throughput screen targeting the highly
diverged NAD binding site of C. parvum IMPDH (CpIMPDH; this protein is identical to C.
hominis IMPDH) (Figure 1).7 Compound C is a moderately potent but highly selective
inhibitor for CpIMPDH (IC50 = 1.2 μM) with no detectable activity against the human
IMPDH1 and IMPDH2 (IC50 > 50 μM).

The structure of CpIMPDH in complex with IMP and the C derivative C64 was recently
solved10. This structure revealed the presence of a cavity next to the aniline ring of C64,
suggesting that more potent inhibitors would be obtained if the 4-bromoaniline group was
replaced with bulkier groups. This information was used to guide the design of C90 and
C9710. As expected, the substitution of 2-naphthyl for the 4-bromoaniline increased
potency, with C90 and C97 exhibiting values of IC50 of 7–8 nM (Table 1). Herein, we
report a more comprehensive structure-activity relationship (SAR) study for this class of
inhibitors.

The benzimidazole analogs were synthesized following the procedure outlined in Scheme 2.
Various acetylamide derivatives 3 were prepared by treating substituted anilines 1 with
bromo acetylchlorides, 2, in dichloromethane (DCM) and in the presence of catalytic
amounts of 4-N, N-dimethylaminopyridine (DMAP). Various 2-substituted benzimidazoles
6 were prepared by condensing o-phenylene diamine 4 with aromatic aldehydes followed by
oxidation in the presence of sodium metabisulfite using a slight modification of published
procedures11. Finally, 2-substituted benzimidazoles were coupled with the acetylamides 3 in
the presence of potassium carbonate to yield benzimidazoles 7. CpIMPDH inhibiton was
measured by monitoring the production of NADH in the presence of varying inhibitor
concentrations9. Inhibition was also determined in the presence of 0.05% fatty acid free
bovine serum albumin (BSA) in order to evaluate the effects of non-specific binding.
Gratifyingly, none of the CpIMPDH inhibitors displayed activity against human IMPDH2
(IC50 > 5 μM). Selected compounds were also evaluated for antiparasitic activity12.

The first region of the molecule examined was the anilide substituent. Replacing the 4-
methoxy of C with a thiomethyl (C39) resulted in a ten-fold increase in activity (Table 1).
However, a branched aliphatic group (C43) at the same position resulted in decreased
activity. Interestingly, replacing the 4-methoxy with electron withdrawing groups (C9 –
C11, C58, C14, C45) resulted in compounds with increased activity, except for sulfone
C40. Larger more hydrophobic groups such as chlorine (C10) and bromine (C14) were best.
Translocation of the chlorine from the 4-position to either the 3- or 2- positions (C20, C48)
was detrimental. Several compounds containing electron withdrawing groups in the 3- and
4-positions (C86 and C93) also demonstrated potent inhibitory activity. Surprisingly,
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addition of a chlorine to the 2-naphthyl (C28) was not tolerated. Introduction of a methyl
onto the methylene between the amide carbonyl and the imidazole resulted in increased
potency in one case (C79 vs. C10), but decreased activity in another case (C87 vs. C86).
Increasing the steric bulk of the methyl group to i-Pr (C24) was detrimental. Finally,
inserting a methylene between the amide NH and the phenyl ring (C18) was not tolerated.

Subsequently, the SAR of the 4-thiazolyl ring was examined (Table 2). As reported
previously, changing the connectivity to a 2-thiazolyl increased activity for several analogs
(C61 vs. C10, C64 vs. C14, C74 vs. C79) and retained potent activity for another analog
(C97 vs. C90)10. The 5-thiazolyl was also comparatively active (C67 vs. C61). In addition,
several other heterocycles (C62, C100, C16) also retained potent activity. However, the 2-
pyrrolyl (C65) and 2-oxazolyl (C69) derivatives demonstrated reduced potency. Likewise,
replacing the thiazole ring by various phenyls (C17, C31, C59) or a methyl (C38) resulted
in significant losses in activity.

In order to further analyze the SAR results, select molecules were docked using GLIDE
(Schrödinger Inc.) into a CpIMPDH model based on the previously determined co-crystal
structure. Free energy perturbation (FEP) calculations were then determined (calculated as
ΔΔG relative to inhibitor C) and the results were highly correlated (r2 = 0.93) to the
observed IC50 determinations (Table 3, Figure 2)13. Inhibitor potency appears to be driven
largely by two major contributions: (1) a hydrogen bond between E329 of CpIMPDH and
the amide NH of the inhibitors; (2) an entropic effect of displacing water molecules from the
binding cavity by large hydrophobic substituents. The presence of strong electron
withdrawing groups on the arylamide increases potency by increasing the strength of the
E329-NH H-bond provided no steric clashes are present. Thus the balance between
conformational state and electron withdrawing ability appears critical for determining the
final potency of the inhibitors. For example, 3,4-dichloro substituted analog C86 is predicted
to be more potent than the 3-chloro analog C48. For the 2-chloro analog C20 a steric clash
is predicted to change the orientation of the phenyl ring lowering the inductive effect of the
chlorine substituent weakening the E329-NH bond. For the 2-naphthyl analog C90,
displacement of ordered water molecules from the active site of the protein is entropically
favored resulting in ΔΔG relative to C of −5.87 kcal/mol and an IC50 value of 7 nM.

Compounds with a value of IC50 less than 30 nM were candidates for testing in a
Toxoplasma gondii model of C. parvum infection12. Preference was given to compounds
that displayed little non-specific binding as judged by changes in the value of IC50 in the
presence of BSA. Wild type T. gondii expresses a eukaryotic IMPDH that is resistant to the
CpIMPDH inhibitors. In contrast, in the T. gondii/CpIMPDH model parasite, the
endogenous IMPDH gene has been replaced with CpIMPDH. In addition, the gene encoding
hypoxanthine-guanine-xanthine phosphoribosyltransferase was knocked out, so this strain
relies on the activity of CpIMPDH to obtain guanine nucleotides. Both T. gondii strains
express yellow fluorescent protein enabling easy monitoring of parasite proliferation. T.
gondii strains were cultured in human foreskin fibroblasts immortalized with hTERT, so this
assay also reports on host cell toxicity. Compounds C64, C84, C90, C91 and C97 all
displayed sub-micromolar activity against T. gondii/CpIMPDH (Table 4). C64 and C97
displayed selectivity • 30 versus the wild-type strain, strongly indicating that antiparasitic
activity results from the inhibition of CpIMPDH.

Compounds C64, C84, C90 and C97 were also tested in an in vitro model of C. parvum
infection12. Importantly, all four compounds are approximately two orders of magnitude
more potent than paromomycin, the standard control for anticryptosporidial activity
(literature paromomycin EC50 values are 65–130 μM7, 12, 14–16). The potencies of C64,
C84, C90 and C97 were similar to that observed in the T. gondii model (Table 4).
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In conclusion, a SAR study of benzimidazole-based CpIMPDH inhibitors revealed that
variations to the aniline and to the heterocycle attached to the 2-position of the
benzimidazole could be altered in order to increase inhibitory activity, while retaining
excellent selectivity over human IMPDH2. The benzimidazole-based CpIMPDH inhibitors
described herein could serve as useful molecular probes for studying C. parvum and other
related organisms in addition to providing lead compounds for the development of effective
treatments of cryptosporidiosis.
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Figure 1.
CpIMPDH selective inhibitor C identified by HTS
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Figure 2.
Correlation of calculated relative affinity with experimental values.
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Scheme 1.
The IMPDH reaction. R = ribose-5'-phosphate
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Scheme 2.
General procedure for synthesizing analogs of C.
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Table 3

Relative affinity of CpIMPDH inhibitors based on docking experiments.13

Compound ΔΔG relative to C (kcal/mol)

C 0

C39 −2.49

C43 4.8

C10 −2.34

C48 −1.39

C20 3.33

C86 −4.12

C90 −5.87

C40 3.99

C11 −1.51

C28 5.77
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Table 4

Antiparasitic activity of selected compounds.

Compound

T. gondii model
a

C. parvum model
EC50(μM)

Selectivity
Toxo/WT Toxo/CpIMPDH EC50 (μM)

C64 >23 0.3 ± 0.1 >73 0.7 ± 0.2
c

C84 3 ± 2 0.7 ± 0.3 5 1.7 ± 0.8
c

C90 5 ± 1 0.6 ± 0.1 9 0.9 ± 0.5

C91 2.7 ± 0.9
c 0.3 ± 0.2 9 n.d.

C97 17 ± 9 0.5 ± 0.4 30 < 0.8
d

All values are the average of three independent trials unless otherwise stated.

a
T. gondii model12. Toxo/WT, strain with endogenous IMPDH; Toxo/CpIMPDH, strain that depends on CpIMPDH. Selectivity = EC50(Toxo/

WT)/EC50(Toxo/CpIMPDH);

b
C. parvum in vitro infection model;

c
two determinations;

d
Average growth inhibition 80 ± 10 % at 0.8 μM.
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