5 research outputs found

    DUAL TRIDENT UWB PLANAR ANTENNA WITH BAND NOTCH FOR WLAN

    Get PDF
    In this paper, a compact microstrip fed ultra-wideband antenna with a band notch characteristic is presented. The proposed antenna consists of two tridents and two uneven split ring resonators. The overall size of the antenna is 26 mm Ă— 24 mm Ă— 1.53 mm. By adding the uneven split ring resonators to the dual trident ultra-wideband antenna, a band notch of 5.05 GHz to 5.9 GHz is achieved. The band notch is adjusted by the size and the split locations of the resonators. CST microwave studios software was used to simulate the design. The measured |S11| (dB) pass band and notch band agree with the simulation within the frequency band from 3.65 GHz to 12.85 GHz

    COVARIANCE MATRIX ADAPTATION EVOLUTIONARY STRATEGY OPTIMIZATION OF PATCH ANTENNA FOR WIRELESS COMMUNICATION

    Get PDF
    Covariance matrix adaptation evolutionary strategy algorithm is applied to optimize a dielectric loaded microstrip patch antenna. The optimization process performance is enhanced by not considering the symmetrical factor of the antenna structure. The antenna is optimized to work for IEEE 802.11a WLAN 5-6 GHz band. Experimental measurements have also been performed to validate the performance of the proposed antenna

    Very Compact Open-Slot Antenna for Wireless Communication Systems

    Get PDF
    A new very compact open slot antenna for wireless communication systems application has been designed and fabricated. With antenna overall dimension of 9.2 × 9.8 mm2, the proposed design can be used in many modern communication devices with size constraints. Experimental measurements have also been performed to validate the performance of the proposed antenna. The measured results show that the antenna provides a wide bandwidth of 48% (5–8.17 GHz) with an average size reduction of about 88% with respect to a conventional microstrip patch antenna

    MINIATUIRIZED ULTRA-WIDEBAND ANTENNAS FOR WIRELESS COMMUNICATIONS

    No full text
    Wireless communication is part of our daily life in several applications, such as cell phones, wireless printers, sensors, etc. Each wireless device requires at least one antenna to communicate with other devices. In 2002, Federal Communications Commission (FCC) assigned a frequency spectrum from 3.1 GHz to 10.6 GHz for ultra-wideband communications. Several narrowband antennas require to cover the entire range. Unlike narrowband antennas, ultra-wideband antennas need to cover the wide frequency band. This research mainly focuses on physically small antenna designs. The first antenna discussed in this dissertation is a dual, triple trident antenna with dimensions 24 mm × 28 mm × 0.785 mm, which will operate from 3 GHz to 12.15 GHz [58]. The first antenna consists of six tridents symmetrical along the vertical direction. The second antenna design is a novel rectangular ring ultra-wideband antenna [59]. Large antennas operate for low frequency, and small antennas work for high frequency. The number of rings increased in wideband antenna to 9 from 4 to check the design methodology. The rectangular ring ultra-wideband antenna has dimensions 24 mm × 26 mm × 1.52 mm. This antenna operates from 3.12 GHz to 12.85 GHz. The third antenna design is an ultra-wideband dual square trident planar antenna. This antenna’s overall size is 26 mm × 24 mm × 1.56 mm [60]. This antenna has impedance bandwidth from 3.65 GHz to 12.50 GHz. The fourth antenna design is an ultra-wideband antenna with a band notch from 5.05 GHz to 5.9 GHz [61]. This antenna consists of two tridents and two split-ring resonators along the microstrip feed line. The overall size of this antenna 26 mm ×24 mm × 1.53mm. Simulations are carried out using the CST microwave studios® to analyze the antenna performance. Experiments are conducted to verify the simulated results using vector network analyzers for impedance and anechoic antenna chamber for radiation characteristics of the antenna. All four antennas are excellent for the wireless device due to their compact size and planar designs
    corecore