13 research outputs found

    Navigating the Landscape for Real-time Localisation and Mapping for Robotics, Virtual and Augmented Reality

    Get PDF
    Visual understanding of 3D environments in real-time, at low power, is a huge computational challenge. Often referred to as SLAM (Simultaneous Localisation and Mapping), it is central to applications spanning domestic and industrial robotics, autonomous vehicles, virtual and augmented reality. This paper describes the results of a major research effort to assemble the algorithms, architectures, tools, and systems software needed to enable delivery of SLAM, by supporting applications specialists in selecting and configuring the appropriate algorithm and the appropriate hardware, and compilation pathway, to meet their performance, accuracy, and energy consumption goals. The major contributions we present are (1) tools and methodology for systematic quantitative evaluation of SLAM algorithms, (2) automated, machine-learning-guided exploration of the algorithmic and implementation design space with respect to multiple objectives, (3) end-to-end simulation tools to enable optimisation of heterogeneous, accelerated architectures for the specific algorithmic requirements of the various SLAM algorithmic approaches, and (4) tools for delivering, where appropriate, accelerated, adaptive SLAM solutions in a managed, JIT-compiled, adaptive runtime context.Comment: Proceedings of the IEEE 201

    MAMBO: A low overhead dynamic binary modification tool for ARM

    No full text
    As the ARM architecture expands beyond its traditional embedded domain, there is a growing interest in dynamic binary modification (DBM) tools for general-purpose multicore processors that are part of the ARM family. Existing DBM tools for ARM suffer from introducing large overheads in the execution of applications. The specific questions that this article addresses are (i) how to develop such DBM tools for the ARM architecture and (ii) whether new optimisations are plausible and needed. We describe the general design of MAMBO, a new DBM tool for ARM, which we release together with this publication, and introduce novel optimisations to handle indirect branches. In addition, we explore scenarios in which it may be possible to relax the transparency offered by DBM tools to allow extra optimisations to be applied. These scenarios arise from analysing the most typical usages: for example, application binaries without handcrafted assembly. The performance evaluation shows that MAMBO introduces small overheads for SPEC CPU2006 and PARSEC 3.0 when comparing with the execution times of the unmodified programs: a geometric mean overhead of 28% on a Cortex-A9 and of 34% on a Cortex-A15 for CPU2006, and between 27% and 32%, depending on the number of threads, for PARSEC on a Cortex-A15.</jats:p

    Optimizing Indirect Branches in Dynamic Binary Translators

    No full text
    Dynamic binary translation is a technology for transparently translating and modifying a program at the machine code level as it is running. A significant factor in the performance of a dynamic binary translator is its handling of indirect branches. Unlike direct branches, which have a known target at translation time, an indirect branch requires translating a source program counter address to a translated program counter address every time the branch is executed. This translation can impose a serious runtime penalty if it is not handled efficiently. MAMBO-X64, a dynamic binary translator that translates 32-bit ARM (AArch32) code to 64-bit ARM (AArch64) code, uses three novel techniques to improve the performance of indirect branch translation. Together, these techniques allow MAMBO-X64 to achieve a very low performance overhead of only 10% on average compared to native execution of 32-bit programs. Hardware-assisted function returns use a software return address stack to predict the targets of function returns, making use of several novel optimizations while also exploiting hardware return address prediction. This technique has a significant impact on most benchmarks, reducing binary translation overhead compared to native execution by 40% on average and by 90% on some benchmarks. Branch table inference , an algorithm for detecting and translating branch tables, can reduce the overhead of translated code by up to 40% on some SPEC CPU2006 benchmarks. The remaining indirect branches are handled using a fast atomic hash table , which is optimized to work with multiple threads. This last technique translates indirect branches using a single shared hash table while avoiding expensive synchronization in performance-critical lookup code. This allows the performance to be on par with thread-private hash tables while having superior memory scalability. </jats:p
    corecore