9 research outputs found

    КандидСмия Ρƒ онкологичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…: фСнотипичСскиС ΠΈ молСкулярно-гСнСтичСскиС характСристики рСзистСнтности ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹ΠΌ лСкарствСнным срСдствам, Π³Π΅Π½Ρ‹ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности Candida spp.

    Get PDF
    Relevance. The global trend of rapid increase in resistance to antifungal drugs due to multiple factors, dictates the need for continuous monitoring of taxonomic structure and susceptibility of nosocomial pathogens, causing invasive fungal infections, for permanent correction of the optimal prevention and treatment strategies.Purpose: to determine antifungal susceptibility of the main yeast pathogens in candidemia in cancer patients, as well as to determine resistance genes and pathogenic factor genes.Material and Methods. Eighty-two strains of Candida spp. isolated from blood of cancer patients from 2015 to 2021 were analyzed. Minimum inhibitory concentrations of fuconazole, voriconazole, posaconazole, anidulafungin and micafungin were determined by a gradient method (E-test, BioMerieux, France). The EUCAST and CLSI criteria were used for MIC value assessment. The genes, associated with pathogenicity factors, and resistance to antifungal drugs were identifed.Results. Our study results based on EUCAST 2020, v.10.0 criteria showed that triazoles, especially fuconazole, were the least effective drugs in empirical therapy for invasive candidiasis (including candidemia). Resistance of Candida spp. fuconazole was superior to that of voriconazole (47.2 % vs 23.2 %, respectively, p<0.01) and posaconazole (47.2 % vs 30.4 %, respectively, p><0.05). The highest in vitro activity was observed in echinocandins, and anidulafungin was 2 times more active than micafungin (4.1 % of resistant strains vs 11.4 %, respectively), with no statistically signifcant difference (p>0.05). The ERG11 and FKS1 genes associated with resistance to antifungal drugs were detected in 28.6 % of Candida spp. strains. The ERG11 gene was detected in 8.6 % of cases, exclusively in Candida albicans strains. The FKS1 gene was identifed in 20.0 % of strains (85.7 % of them were C. parapsilosis, 7.1 % each were C. tropicalis and C. glabrata). Pathogenic factor genes were identifed in 78.6 % of C. albicans and in 79.1 % of C. parapsilosis strains.Conclusion. Molecular genetic methods for the detection of Candida spp strains carrying resistance genes to antifungal drugs, and the determination of pathogenicity factors are promising trends in searching for biomarkers. They facilitate interpretation of results of microbiological study to assess the ability of Candida spp. strains to develop invasive mycoses.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. ΠœΠΈΡ€ΠΎΠ²Π°Ρ тСндСнция ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ увСличСния уровня рСзистСнтности ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, которая связана со ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π΄ΠΈΠΊΡ‚ΡƒΠ΅Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ постоянного ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° таксономичСской структуры Π½ΠΎΠ·ΠΎΠΊΠΎΠΌΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²ΠΎΠ·Π±ΡƒΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… Π³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹Ρ… ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ ΠΈ ΠΈΡ… Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ Π°Π½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ‹ΠΌ лСкарствСнным срСдствам с Ρ†Π΅Π»ΡŒΡŽ постоянной ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ ΠΈ лСчСния ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… Π³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹Ρ… ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ.ЦСль исслСдования – ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΊ Π°Π½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ основных Π²ΠΎΠ·Π±ΡƒΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΉ ΠΏΡ€ΠΈ ΠΊΠ°Π½Π΄ΠΈΠ΄Π΅ΠΌΠΈΠΈ Ρƒ онкологичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π³Π΅Π½ΠΎΠ² рСзистСнтности ΠΈ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ 82 ΡˆΡ‚Π°ΠΌΠΌΠ° Candida spp., Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· ΠΊΡ€ΠΎΠ²ΠΈ онкологичСских Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2015–21 Π³Π³. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ Ρ„Π»ΡƒΠΊΠΎΠ½Π°Π·ΠΎΠ»Π°, Π²ΠΎΡ€ΠΈΠΊΠΎΠ½Π°Π·ΠΎΠ»Π°, ΠΏΠΎΠ·Π°ΠΊΠΎΠ½Π°Π·ΠΎΠ»Π°, Π°Π½ΠΈΠ΄ΡƒΠ»Π°Ρ„ΡƒΠ½Π³ΠΈΠ½Π° ΠΈ ΠΌΠΈΠΊΠ°Ρ„ΡƒΠ½Π³ΠΈΠ½Π° выполняли Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚Π½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ (Π•-тСст, BioMerieux, France). Для ΠΎΡ†Π΅Π½ΠΊΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ МИК использовали ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ EUCAST ΠΈ CLSI. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Π³Π΅Π½Ρ‹, ассоциированныС с Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ патогСнности ΠΈ рСзистСнтности ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹ΠΌ лСкарствСнным срСдствам.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ нашСго исслСдования (ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ EUCAST) Π² качСствС эмпиричСской Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΊΠ°Π½Π΄ΠΈΠ΄ΠΎΠ·Π° (Π² Ρ‚. Ρ‡. ΠΊΠ°Π½Π΄ΠΈΠ΄Π΅ΠΌΠΈΠΈ) Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ эффСктивными ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚Ρ€ΠΈΠ°Π·ΠΎΠ»Ρ‹, особСнно Ρ„Π»ΡƒΠΊΠΎΠ½Π°Π·ΠΎΠ», ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Ρ‡Π°Ρ‰Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ Candida spp. рСзистСнтны ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π²ΠΎΡ€ΠΈΠΊΠΎΠ½Π°Π·ΠΎΠ»ΠΎΠΌ (47,2 % ΠΏΡ€ΠΎΡ‚ΠΈΠ² 23,2 %, p<0,01) ΠΈ ΠΏΠΎΠ·Π°ΠΊΠΎΠ½Π°Π·ΠΎΠ»ΠΎΠΌ (47,2 % ΠΏΡ€ΠΎΡ‚ΠΈΠ² 30,4 %, p><0,05). Наибольшая Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ in vitro отмСчаСтся Ρƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π³Ρ€ΡƒΠΏΠΏΡ‹ эхинокандинов, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π°Π½ΠΈΠ΄ΡƒΠ»Π°Ρ„ΡƒΠ½Π³ΠΈΠ½ Π² 2 Ρ€Π°Π·Π° Π°ΠΊΡ‚ΠΈΠ²Π½Π΅Π΅ ΠΌΠΈΠΊΠ°Ρ„ΡƒΠ½Π³ΠΈΠ½Π° (4,1 % рСзистСнтных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΏΡ€ΠΎΡ‚ΠΈΠ² 11,4 %), Π½ΠΎ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠΉ Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ ΠΏΡ€ΠΈ этом Π½Π΅ выявлСно. Π“Π΅Π½Ρ‹ ERG11 ΠΈ FKS1, ассоциированныС с Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, Π±Ρ‹Π»ΠΈ выявлСны Ρƒ 28,6 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp.. Π“Π΅Π½ ERG11 Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ Π² 8,6 % случаСв, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρƒ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida albicans. Π“Π΅Π½ FKS1 ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Ρƒ 20,0 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² (85,7 % – C. parapsilosis, ΠΏΠΎ 7,1 % – C. tropicalis ΠΈ C. glabrata). Π“Π΅Π½Ρ‹ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρƒ 78,6 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² C. albicans ΠΈ Ρƒ 79,1 % изолятов C. parapsilosis. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ выявлСния ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp., нСсущих Π³Π΅Π½Ρ‹ рСзистСнтности ΠΊ Π°Π½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности –><Β  0,01) ΠΈ ΠΏΠΎΠ·Π°ΠΊΠΎΠ½Π°Π·ΠΎΠ»ΠΎΠΌ (47,2 % ΠΏΡ€ΠΎΡ‚ΠΈΠ² 30,4 %, p<0,05). Наибольшая Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ in vitro отмСчаСтся Ρƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π³Ρ€ΡƒΠΏΠΏΡ‹ эхинокандинов, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π°Π½ΠΈΠ΄ΡƒΠ»Π°Ρ„ΡƒΠ½Π³ΠΈΠ½ Π² 2 Ρ€Π°Π·Π° Π°ΠΊΡ‚ΠΈΠ²Π½Π΅Π΅ ΠΌΠΈΠΊΠ°Ρ„ΡƒΠ½Π³ΠΈΠ½Π° (4,1 % рСзистСнтных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΏΡ€ΠΎΡ‚ΠΈΠ² 11,4 %), Π½ΠΎ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠΉ Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ ΠΏΡ€ΠΈ этом Π½Π΅ выявлСно. Π“Π΅Π½Ρ‹ ERG11 ΠΈ FKS1, ассоциированныС с Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, Π±Ρ‹Π»ΠΈ выявлСны Ρƒ 28,6 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp.. Π“Π΅Π½ ERG11 Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ Π² 8,6 % случаСв, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρƒ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida albicans. Π“Π΅Π½ FKS1 ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Ρƒ 20,0 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² (85,7 % – C. parapsilosis, ΠΏΠΎ 7,1 % – C. tropicalis ΠΈ C. glabrata). Π“Π΅Π½Ρ‹ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρƒ 78,6 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² C. albicans ΠΈ Ρƒ 79,1 % изолятов C. parapsilosis. Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ выявлСния ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp., нСсущих Π³Π΅Π½Ρ‹ рСзистСнтности ΠΊ Π°Π½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности –>< 0,05). Наибольшая Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ in vitro отмСчаСтся Ρƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π³Ρ€ΡƒΠΏΠΏΡ‹ эхинокандинов, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Π°Π½ΠΈΠ΄ΡƒΠ»Π°Ρ„ΡƒΠ½Π³ΠΈΠ½ Π² 2 Ρ€Π°Π·Π° Π°ΠΊΡ‚ΠΈΠ²Π½Π΅Π΅ ΠΌΠΈΠΊΠ°Ρ„ΡƒΠ½Π³ΠΈΠ½Π° (4,1 % рСзистСнтных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² ΠΏΡ€ΠΎΡ‚ΠΈΠ² 11,4 %), Π½ΠΎ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠΉ Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ ΠΏΡ€ΠΈ этом Π½Π΅ выявлСно. Π“Π΅Π½Ρ‹ ERG11 ΠΈ FKS1, ассоциированныС с Ρ€Π΅Π·ΠΈΡΡ‚Π΅Π½Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, Π±Ρ‹Π»ΠΈ выявлСны Ρƒ 28,6 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp.. Π“Π΅Π½ ERG11 Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ Π² 8,6 % случаСв, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρƒ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida albicans. Π“Π΅Π½ FKS1 ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Ρƒ 20,0 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² (85,7 % – C. parapsilosis, ΠΏΠΎ 7,1 % – C. tropicalis ΠΈ C. glabrata). Π“Π΅Π½Ρ‹ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρƒ 78,6 % ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² C. albicans ΠΈ Ρƒ 79,1 % изолятов C. parapsilosis.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠœΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΎ-гСнСтичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ выявлСния ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp., нСсущих Π³Π΅Π½Ρ‹ рСзистСнтности ΠΊ Π°Π½Ρ‚ΠΈΡ„ΡƒΠ½Π³Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² патогСнности – это пСрспСктивныС направлСния для поиска Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ², ΠΎΠ±Π»Π΅Π³Ρ‡Π°ΡŽΡ‰ΠΈΡ… ΡΠ»ΠΎΠΆΠ½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΠ²ΠΊΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² микробиологичСского исслСдования ΠΏΠΎ ΠΎΡ†Π΅Π½ΠΊΠ΅ способности ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Candida spp. ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠΈΠΊΠΎΠ·ΠΎΠ²

    Kosterlitz-Thouless scaling at many-body localization phase transitions

    No full text
    We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a β€œquantum avalanche.” We argue that the critical properties can be captured at a coarse-grained level by a Kosterlitz-Thouless (KT) renormalization group (RG) flow. On phenomenological grounds, we identify the scaling variables as the density of thermal regions and the length scale that controls the decay of typical matrix elements. Within this KT picture, the MBL phase is a line of fixed points that terminates at the delocalization transition. We discuss two possible scenarios distinguished by the distribution of rare, fractal thermal inclusions within the MBL phase. In the first scenario, these regions have a stretched exponential distribution in the MBL phase. In the second scenario, the near-critical MBL phase hosts rare thermal regions that are power-law-distributed in size. This points to the existence of a second transition within the MBL phase, at which these power laws change to the stretched exponential form expected at strong disorder. We numerically simulate two different phenomenological RGs previously proposed to describe the MBL transition. Both RGs display a universal power-law length distribution of thermal regions at the transition with a critical exponent Ξ±c = 2, and continuously varying exponents in the MBL phase consistent with the KT picture.</p

    Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations

    No full text
    Abstract Background It is generally accepted that most evolutionary transformations at the phenotype level are associated either with rearrangements of genomic regulatory elements, which control the activity of gene networks, or with changes in the amino acid contents of proteins. Recently, evidence has accumulated that significant evolutionary transformations could also be associated with the loss/emergence of whole genes. The targeted identification of such genes is a challenging problem for both bioinformatics and evo-devo research. Results To solve this problem we propose the WINEGRET method, named after the first letters of the title. Its main idea is to search for genes that satisfy two requirements: first, the desired genes were lost/emerged at the same evolutionary stage at which the phenotypic trait of interest was lost/emerged, and second, the expression of these genes changes significantly during the development of the trait of interest in the model organism. To verify the first requirement, we do not use existing databases of orthologs, but rely purely on gene homology and local synteny by using some novel quickly computable conditions. Genes satisfying the second requirement are found by deep RNA sequencing. As a proof of principle, we used our method to find genes absent in extant amniotes (reptiles, birds, mammals) but present in anamniotes (fish and amphibians), in which these genes are involved in the regeneration of large body appendages. As a result, 57 genes were identified. For three of them, c-c motif chemokine 4, eotaxin-like, and a previously unknown gene called here sod4, essential roles for tail regeneration were demonstrated. Noteworthy, we established that the latter gene belongs to a novel family of Cu/Zn-superoxide dismutases lost by amniotes, SOD4. Conclusions We present a method for targeted identification of genes whose loss/emergence in evolution could be associated with the loss/emergence of a phenotypic trait of interest. In a proof-of-principle study, we identified genes absent in amniotes that participate in body appendage regeneration in anamniotes. Our method provides a wide range of opportunities for studying the relationship between the loss/emergence of phenotypic traits and the loss/emergence of specific genes in evolution
    corecore