1,389 research outputs found

    N\'{e}el transition of lattice fermions in a harmonic trap: a real-space DMFT study

    Get PDF
    We study the magnetic ordering transition for a system of harmonically trapped ultracold fermions with repulsive interactions in a cubic optical lattice, within a real-space extension of dynamical mean-field theory (DMFT). Using a quantum Monte Carlo impurity solver, we establish that antiferromagnetic correlations are signaled, at strong coupling, by an enhanced double occupancy. This signature is directly accessible experimentally and should be observable well above the critical temperature for long-range order. Dimensional aspects appear less relevant than naively expected.Comment: 4 pages, 4 figure

    Superconducting single-mode contact as a microwave-activated quantum interferometer

    Full text link
    The dynamics of a superconducting quantum point contact biased at subgap voltages is shown to be strongly affected by a microwave electromagnetic field. Interference among a sequence of temporally localized, microwave-induced Landau-Zener transitions between current carrying Andreev levels results in energy absorption and in an increase of the subgap current by several orders of magnitude. The contact is an interferometer in the sense that the current is an oscillatory function of the inverse bias voltage. Possible applications to Andreev-level spectroscopy and microwave detection are discussed

    Mott transitions in ternary flavor mixtures of ultracold fermions on optical lattices

    Full text link
    Ternary flavor mixtures of ultracold fermionic atoms in an optical lattice are studied in the case of equal, repulsive on-site interactions U>0. The corresponding SU(3) invariant Hubbard model is solved numerically exactly within dynamical mean-field theory using multigrid Hirsch-Fye quantum Monte Carlo simulations. We establish Mott transitions close to integer filling at low temperatures and show that the associated signatures in the compressibility and pair occupancy persist to high temperatures, i.e., should be accessible to experiments. In addition, we present spectral functions and discuss the properties of a ``semi-compressible'' state observed for large U near half filling.Comment: 4 pages, 5 figure

    Overtones of Isoscalar Giant Resonances in medium-heavy and heavy nuclei

    Full text link
    A semi-microscopic approach based on both the continum-random-phase-approximation (CRPA) method and a phenomenological treatment of the spreading effect is extended and applied to describe the main properties (particle-hole strength distribution, energy-dependent transition density, partial direct-nucleon-decay branching ratios) of the isoscalar giant dipole, second monopole, and second quadrupole resonances. Abilities of the approach are checked by description of gross properties of the main-tone resonances. Calculation results obtained for the resonances in a few singly- and doubly-closed-shell nuclei are compared with available experimental data.Comment: 12 pages, 14 figures, submitted to Phys. Rev.

    Cooling of a suspended nanowire by an AC Josephson current flow

    Get PDF
    We consider a nanoelectromechanical Josephson junction, where a suspended nanowire serves as a superconducting weak link, and show that an applied DC bias voltage an result in suppression of the flexural vibrations of the wire. This cooling effect is achieved through the transfer of vibronic energy quanta first to voltage driven Andreev states and then to extended quasiparticle electronic states. Our analysis, which is performed for a nanowire in the form of a metallic carbon nanotube and in the framework of the density matrix formalism, shows that such self-cooling is possible down to a level where the average occupation number of the lowest flexural vibration mode of the nanowire is 0.1\sim 0.1.Comment: 4 pages, 3 figure
    corecore