54 research outputs found

    Endocytic pathways: combined scanning ion conductance and surface confocal microscopy study

    Get PDF
    We introduce a novel high resolution scanning surface confocal microscopy technique that enables imaging of endocytic pits in apical membranes of live cells for the first time. The improved topographical resolution of the microscope together with simultaneous fluorescence confocal detection produces pairs of images of cell surfaces sufficient to identify single endocytic pits. Whilst the precise position and size of the pit is detected by the ion conductance microscope, the molecular nature of the pit, e.g. clathrin coated or caveolae, is determined by the corresponding green fluorescent protein fluorescence. Also, for the first time, we showed that flotillin 1 and 2 can be found co-localising with ~200-nm indentations in the cell membrane that supports involvement of this protein in endocytosis

    Scanning ion conductance microscopy: a convergent high-resolution technology for multi-parametric analysis of living cardiovascular cells

    Get PDF
    Cardiovascular diseases are complex pathologies that include alterations of various cell functions at the levels of intact tissue, single cells and subcellular signalling compartments. Conventional techniques to study these processes are extremely divergent and rely on a combination of individual methods, which usually provide spatially and temporally limited information on single parameters of interest. This review describes scanning ion conductance microscopy (SICM) as a novel versatile technique capable of simultaneously reporting various structural and functional parameters at nanometre resolution in living cardiovascular cells at the level of the whole tissue, single cells and at the subcellular level, to investigate the mechanisms of cardiovascular disease. SICM is a multimodal imaging technology that allows concurrent and dynamic analysis of membrane morphology and various functional parameters (cell volume, membrane potentials, cellular contraction, single ion-channel currents and some parameters of intracellular signalling) in intact living cardiovascular cells and tissues with nanometre resolution at different levels of organization (tissue, cellular and subcellular levels). Using this technique, we showed that at the tissue level, cell orientation in the inner and outer aortic arch distinguishes atheroprone and atheroprotected regions. At the cellular level, heart failure leads to a pronounced loss of T-tubules in cardiac myocytes accompanied by a reduction in Z-groove ratio. We also demonstrated the capability of SICM to measure the entire cell volume as an index of cellular hypertrophy. This method can be further combined with fluorescence to simultaneously measure cardiomyocyte contraction and intracellular calcium transients or to map subcellular localization of membrane receptors coupled to cyclic adenosine monophosphate production. The SICM pipette can be used for patch-clamp recordings of membrane potential and single channel currents. In conclusion, SICM provides a highly informative multimodal imaging platform for functional analysis of the mechanisms of cardiovascular diseases, which should facilitate identification of novel therapeutic strategies

    Nanoscale live-cell imaging using hopping probe ion conductance microscopy,

    Get PDF
    We describe hopping mode scanning ion conductance microscopy that allows noncontact imaging of the complex three-dimensional surfaces of live cells with resolution better than 20 nm. We tested the effectiveness of this technique by imaging networks of cultured rat hippocampal neurons and mechanosensory stereocilia of mouse cochlear hair cells. The technique allowed examination of nanoscale phenomena on the surface of live cells under physiological conditions. There is a great interest in developing methods to image live cells at nanoscale resolution. Scanning probe microscopy (SPM) is one approach to this problem and both atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) have been used to image live cells 1,2 . However, deformation of the soft and responsive cell by the AFM cantilever, particularly when imaging eukaryotic cells, represents a substantial problem for AFM. SECM, in contrast, involves no physical contact with the sample, but true topographic imaging of the convoluted surface of living cells with nanoscale resolution has not been reported. Scanning ion conductance microscopy (SICM) 3 is another form of SPM, which allows imaging of the cell surface under physiological conditions without physical contact and with a resolution of 3-6 nm 4,5 . Until now, SICM has been restricted to imaging relatively flat surfaces, as all other SPM techniques. This is because when the probe encounters a vertical structure, it inevitably collides with the specimen SICM is based on the phenomenon that the ion flow through a sharp fluid-filled nanopipette is partially occluded when the pipette approaches the surface of a cell 3 . In conventional SICM, a nanopipette is mounted on a three-dimensional piezoelectric translation stage and automatic feedback control moves the pipette up or down to keep the pipette current constant (the set point) while the sample is scanned in x and y directions. Thus, a pipette-sample separation, typically equal to the pipette's inner radius, is maintained during imaging. In hopping probe ion conductance microscopy (HPICM), we no longer use continuous feedback. Instead, at each imaging point, the pipette approaches the sample from a starting position that is above any of the surface features We illustrate the benefits of HPICM in In contrast to conventional raster scanning, HPICM has the additional advantage that the order of imaging pixels is not predetermined. Therefore, we divided the entire image into equal-sized square

    An Integrated Disease/Pharmacokinetic/Pharmacodynamic Model Suggests Improved Interleukin-21 Regimens Validated Prospectively for Mouse Solid Cancers

    Get PDF
    Interleukin (IL)-21 is an attractive antitumor agent with potent immunomodulatory functions. Yet thus far, the cytokine has yielded only partial responses in solid cancer patients, and conditions for beneficial IL-21 immunotherapy remain elusive. The current work aims to identify clinically-relevant IL-21 regimens with enhanced efficacy, based on mathematical modeling of long-term antitumor responses. For this purpose, pharmacokinetic (PK) and pharmacodynamic (PD) data were acquired from a preclinical study applying systemic IL-21 therapy in murine solid cancers. We developed an integrated disease/PK/PD model for the IL-21 anticancer response, and calibrated it using selected “training” data. The accuracy of the model was verified retrospectively under diverse IL-21 treatment settings, by comparing its predictions to independent “validation” data in melanoma and renal cell carcinoma-challenged mice (R2>0.90). Simulations of the verified model surfaced important therapeutic insights: (1) Fractionating the standard daily regimen (50 µg/dose) into a twice daily schedule (25 µg/dose) is advantageous, yielding a significantly lower tumor mass (45% decrease); (2) A low-dose (12 µg/day) regimen exerts a response similar to that obtained under the 50 µg/day treatment, suggestive of an equally efficacious dose with potentially reduced toxicity. Subsequent experiments in melanoma-bearing mice corroborated both of these predictions with high precision (R2>0.89), thus validating the model also prospectively in vivo. Thus, the confirmed PK/PD model rationalizes IL-21 therapy, and pinpoints improved clinically-feasible treatment schedules. Our analysis demonstrates the value of employing mathematical modeling and in silico-guided design of solid tumor immunotherapy in the clinic

    Bone Marrow B cell Precursor Number after Allogeneic Stem Cell Transplantation and GVHD Development

    Get PDF
    Patients without chronic graft-versus-host disease (cGVHD) have robust B cell reconstitution and are able to maintain B cell homeostasis after allogeneic hematopoietic stem cell transplantation (HSCT). To determine whether B lymphopoiesis differs before cGVHD develops, we examined bone marrow (BM) biopsies for terminal deoxynucleotidyl transferase (TdT) and PAX5 immunostaining early post-HSCTat day 30 when all patients have been shown to have high B cell activating factor (BAFF) levels. We found significantly greater numbers of BM B cell precursors in patients who did not develop cGVHD compared with those who developed cGVHD (median = 44 vs 2 cells/high powered field [hpf]; respectively; P < .001). Importantly, a significant increase in precursor B cells was maintained when patients receiving high-dose steroid therapy were excluded (median = 49 vs 20 cells/hpf; P =.017). Thus, we demonstrate the association of BM B cell production capacity in human GVHD development. Increased BM precursor B cell number may serve to predict good clinical outcome after HSCT

    Predicting Outcomes of Prostate Cancer Immunotherapy by Personalized Mathematical Models

    Get PDF
    Therapeutic vaccination against disseminated prostate cancer (PCa) is partially effective in some PCa patients. We hypothesized that the efficacy of treatment will be enhanced by individualized vaccination regimens tailored by simple mathematical models.We developed a general mathematical model encompassing the basic interactions of a vaccine, immune system and PCa cells, and validated it by the results of a clinical trial testing an allogeneic PCa whole-cell vaccine. For model validation in the absence of any other pertinent marker, we used the clinically measured changes in prostate-specific antigen (PSA) levels as a correlate of tumor burden. Up to 26 PSA levels measured per patient were divided into each patient's training set and his validation set. The training set, used for model personalization, contained the patient's initial sequence of PSA levels; the validation set contained his subsequent PSA data points. Personalized models were simulated to predict changes in tumor burden and PSA levels and predictions were compared to the validation set. The model accurately predicted PSA levels over the entire measured period in 12 of the 15 vaccination-responsive patients (the coefficient of determination between the predicted and observed PSA values was R(2) = 0.972). The model could not account for the inconsistent changes in PSA levels in 3 of the 15 responsive patients at the end of treatment. Each validated personalized model was simulated under many hypothetical immunotherapy protocols to suggest alternative vaccination regimens. Personalized regimens predicted to enhance the effects of therapy differed among the patients.Using a few initial measurements, we constructed robust patient-specific models of PCa immunotherapy, which were retrospectively validated by clinical trial results. Our results emphasize the potential value and feasibility of individualized model-suggested immunotherapy protocols

    Hyperglycemia on Admission Predicts Acute Kidney Failure and Renal Functional Recovery among Inpatients

    No full text
    Background: Hyperglycemia is associated with adverse outcomes in hospitalized patients. We aimed to assess the impact of glucose levels upon admission on the subsequent deterioration or improvement of kidney function in inpatients with a focus on diabetes or reduced baseline kidney function as possible modifiers of this effect. Methods: Running a retrospective cohort analysis, we compared patients with normal vs. high glucose levels upon admission. We applied multivariable logistic regression models to study the association between baseline glucose levels with subsequent renal and clinical outcomes. Interaction terms were used to study a possible modifier effect of diabetes. Results: Among 95,556 inpatients (52% males, mean age 61 years), 15,675 (16.5%) had plasma glucose higher than 180 mg/dL, and 72% of them were diabetics. Patients with higher glucose at presentation were older, with a higher proportion of co-morbid conditions. Rates of acute kidney injury (AKI), acute kidney functional recovery (AKR), and mortality were proportional to reduced renal function. AKI, AKR, and mortality were almost doubled in patients with high baseline glucose upon admission. Multivariable analysis with interaction terms demonstrated an increasing adjusted probability of all events as glucose increased, yet this association was observed principally in non-diabetic patients. Conclusions: Hyperglycemia is associated with AKI, AKR, and mortality in non-diabetic inpatients in proportion to the severity of their acute illness. This association diminishes in diabetic patients, suggesting a possible impact of treatable and easily reversible renal derangement in this population

    Optimal processes of chaotic uncertainty correction

    No full text
    All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately

    Nanoscale, Voltage-Driven Application of Bioactive Substances onto Cells with Organized Topography.

    Get PDF
    With scanning ion conductance microscopy (SICM), a noncontact scanning probe technique, it is possible both to obtain information about the surface topography of live cells and to apply molecules onto specific nanoscale structures. The technique is therefore widely used to apply chemical compounds and to study the properties of molecules on the surfaces of various cell types. The heart muscle cells, i.e., the cardiomyocytes, possess a highly elaborate, unique surface topography including transverse-tubule (T-tubule) openings leading into a cell internal system that exclusively harbors many proteins necessary for the cell's physiological function. Here, we applied isoproterenol into these surface openings by changing the applied voltage over the SICM nanopipette. To determine the grade of precision of our application we used finite-element simulations to investigate how the concentration profile varies over the cell surface. We first obtained topography scans of the cardiomyocytes using SICM and then determined the electrophoretic mobility of isoproterenol in a high ion solution to be -7 × 10(-9) m(2)/V s. The simulations showed that the delivery to the T-tubule opening is highly confined to the underlying Z-groove, and especially to the first T-tubule opening, where the concentration is ∼6.5 times higher compared to on a flat surface under the same delivery settings. Delivery to the crest, instead of the T-tubule opening, resulted in a much lower concentration, emphasizing the importance of topography in agonist delivery. In conclusion, SICM, unlike other techniques, can reliably deliver precise quantities of compounds to the T-tubules of cardiomyocytes
    corecore