400 research outputs found

    Shifting and splitting of resonance lines due to dynamical friction in plasmas

    Full text link
    A quasilinear plasma transport theory that incorporates Fokker-Planck dynamical friction (drag) and scattering is self-consistently derived from first principles for an isolated, marginally-unstable mode resonating with an energetic minority species. It is found that drag fundamentally changes the structure of the wave-particle resonance, breaking its symmetry and leading to the shifting and splitting of resonance lines. In contrast, scattering broadens the resonance in a symmetric fashion. Comparison with fully nonlinear simulations shows that the proposed quasilinear system preserves the exact instability saturation amplitude and the corresponding particle redistribution of the fully nonlinear theory. Even though drag is shown to lead to a relatively small resonance shift, it underpins major changes in the redistribution of resonant particles. These findings suggest that drag can play a key role in modeling the energetic particle confinement in future burning fusion plasmas

    Saturation of fishbone instability by self-generated zonal flows in tokamak plasmas

    Full text link
    Gyrokinetic simulations of the fishbone instability in DIII-D tokamak plasmas find that self-generated zonal flows can dominate the nonlinear saturation by preventing coherent structures from persisting or drifting in the energetic particle phase space with mode down-chirping. Results from the simulation with zonal flows agree quantitatively, for the first time, with experimental measurements of the fishbone saturation amplitude and energetic particle transport. Moreover, the suppression of the microturbulence by fishbone-induced zonal flows is likely responsible for the formation of an internal transport barrier that was observed after fishbone bursts in this DIII-D experiment. Finally, gyrokinetic simulations of a related ITER baseline scenario show that the fishbone induces insignificant energetic particle redistribution and may enable high performance scenarios in ITER burning plasma experiments

    Particle Distribution Modification by Low Amplitude Modes

    Full text link
    Modification of a high energy particle distribution by a spectrum of low amplitude modes is investigated using a guiding center code. Only through resonance are modes effective in modifying the distribution. Diagnostics are used to illustrate the mode-particle interaction and to find which effects are relevant in producing significant resonance, including kinetic Poincare plots and plots showing those orbits with time averaged mode-particle energy transfer. Effects of pitch angle scattering and drag are studied, as well as plasma rotation and time dependence of the equilibrium and mode frequencies. A specific example of changes observed in a DIII-D deuterium beam distribution in the presence of low amplitude experimentally validated Toroidal Alfven (TAE) eigenmodes and Reversed Shear Alfven (RSAE) eigenmodes is examined in detail. Comparison with experimental data shows that multiple low amplitude modes can account for significant modification of high energy beam particle distributions. It is found that there is a stochastic threshold for beam profile modification, and that the experimental amplitudes are only slightly above this threshold
    corecore