12 research outputs found

    Application of normal-phase high-performance liquid chromatography followed by gas chromatography for analytics of diesel fuel additives

    Get PDF
    The paper presents the results of investigations on new procedures of determination of selected cleaning additives in diesel fuel. Two procedures: one-step analysis using gas chromatography with flame ionization detection (GC-FID) or mass spectrometry (GC-MS) and a two-step procedure in which normal-phase high-performance liquid chromatography (NP-HPLC) was used for preliminary separation of the additives, were compared. The additive fraction was collected using either simple elution or eluent backflush. Final determinations were performed by GC-FID and GC-MS. The studies revealed that it was impossible to determine the investigated analytes by one-step procedures, i.e. by using solely HPLC or GC. On the other hand, the use of a two-step procedure ensures reproducible results of determinations, and the limits of quantitation are, depending on the method of fraction collection by HPLC, from 1.4–2.2 ppm (GC-MS in SIM mode) to 9.6–24.0 ppm (GC-FID). Precision and accuracy of the developed procedures are compared, and possible determination errors and shortcomings discussed. [Figure: see text

    Effects of particle size on cell uptake of model triglyceride-rich particles with and without apoprotein E

    No full text
    The effect of apoprotein E on cellular uptake of "VLDL-size" and "IDL-size" triacylglycerol-phospholipid emulsion particles was studied in J-774 macrophages and fibroblasts. In the absence of apoprotein E (apo E), uptake of the smaller IDL-size particles was up to 2-fold higher by mass and 100-fold higher as calculated by particle number. Apo E enhanced the uptake of both VLDL-size and IDL-size emulsion particles, but the effect was greater on the uptake of larger particles (4-5-fold) as compared to up to a 2-fold increase in the uptake of IDL-size particles. In fibroblasts, particle uptake was less than in macrophages (30-50%), but preferential uptake of smaller particles was similarly observed. Particle internalization was demonstrated by 125I-apo E degradation and resistance to particle release by heparin-suramin. In the absence of apo E, cholesteryl ester of emulsion particles (prepared with trace amounts of [3H]cholesteryl ester) was hydrolyzed to free cholesterol, proving internalization and intracellular metabolism. Double-label experiments using Dil-labeled emulsion particles, in the absence and presence of apo E, showed that emulsion particles are rapidly targeted to perinuclear lysosomes. Thus, at physiological concentrations of triglyceride-rich particles, non-receptor-mediated uptake is a mechanism for the uptake of VLDL-size and IDL-size particles into cells. © 1994 American Chemical Society.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Effects of apoprotein E on intracellular metabolism of model triglyceride-rich particles are distinct from effects on cell particle uptake

    No full text
    Apoprotein E (apoE) enhances uptake of triglyceride-rich lipoprotein particles (TGRP). We questioned whether apoE would also modulate intracellular metabolism of TGRP in addition to its effects on particle uptake. We prepared model TGRP with triolein and cholesteryl oleate (1:1, w/w) as the core lipids, emulsified by egg yolk phosphatidylcholine, and containing a non-degradable marker, [3H]cholesteryl hexadecyl ether. Particles were intermediate density lipoprotein-sized as determined by core lipid/phospholipid ratios (2.0-3.0/1) and gel filtration chromatography on Sepharose CL-2B. Emulsions were incubated with J774 macrophages for 5 min to 6 h at core lipid concentrations of 300-1200 μg/ml and 0-0.2 μg recombinant apoE/mg core lipid. Particle uptake was determined by [3H]cholesteryl ether uptake and fluorescence microscopy in the absence and presence of apoE. Similar uptake of particles with and without apoE was achieved by utilizing a 4 times higher particle concentration in the absence of apoE. At equivalent levels of uptake, particles with apoE lead to one-half of the triglyceride mass accumulation and twice the triglyceride utilization as compared to particles without apoE. Further, apoE doubles cell cholesteryl ester hydrolysis and to a lesser extent (∼30%) increases cholesteryl ester resynthesis by acyl-CoA cholesterol acyltransferase. Particles, both with and without apoE, reach the lysosomal compartment as determined by colocalization with fluorescein-labeled α2-macroglobulin. These results suggest that, in addition to its role in enhancing TGRP uptake, apoE has additional effects on modulating the cellular metabolism of both triglyceride and cholesteryl ester, after particle internalization.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore