716 research outputs found

    Influences of Neural Pathway Integrity on Children's Response to Reading Instruction

    Get PDF
    As the education field moves toward using responsiveness to intervention to identify students with disabilities, an important question is the degree to which this classification can be connected to a student's neurobiological characteristics. A few functional neuroimaging studies have reported a relationship between activation and response to instruction; however, whether a similar correlation exists with white matter (WM) is not clear. To investigate this issue, we acquired high angular resolution diffusion images from a group of first grade children who differed in their levels of responsiveness to a year-long reading intervention. Using probabilistic tractography, we calculated the strength of WM connections among nine cortical regions of interest and correlated these estimates with participants’ scores on four standardized reading measures. We found eight significant correlations, four of which were connections between the insular cortex and angular gyrus. In each of the correlations, a relationship with children's response to intervention was evident

    Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods

    Get PDF
    Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 40962 or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 10242 and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images

    Beyond Shape: How You Learn about Objects Affects How They Are Represented in Visual Cortex

    Get PDF
    Background: Experience can alter how objects are represented in the visual cortex. But experience can take different forms. It is unknown whether the kind of visual experience systematically alters the nature of visual cortical object representations. Methodology/Principal Findings: We take advantage of different training regimens found to produce qualitatively different types of perceptual expertise behaviorally in order to contrast the neural changes that follow different kinds of visual experience with the same objects. Two groups of participants went through training regimens that required either subordinate-level individuation or basic-level categorization of a set of novel, artificial objects, called ‘‘Ziggerins’’. fMRI activity of a region in the right fusiform gyrus increased after individuation training and was correlated with the magnitude of configural processing of the Ziggerins observed behaviorally. In contrast, categorization training caused distributed changes, with increased activity in the medial portion of the ventral occipito-temporal cortex relative to more lateral areas. Conclusions/Significance: Our results demonstrate that the kind of experience with a category of objects can systematically influence how those objects are represented in visual cortex. The demands of prior learning experience therefore appear t

    Clinical Feasibility of Noninvasive Visualization of Lymphatic Flow with Principles of Spin Labeling MR Imaging: Implications for Lymphedema Assessment

    Get PDF
    Purpose To extend a commonly used noninvasive arterial spin labeling magnetic resonance (MR) imaging method for measuring blood flow to evaluate lymphatic flow. Materials and Methods All volunteers (n = 12) provided informed consent in accordance with institutional review board and HIPAA regulations. Quantitative relaxation time (T1 and T2) measurements were made in extracted human lymphatic fluid at 3.0 T. Guided by these parameters, an arterial spin labeling MR imaging approach was adapted to measure lymphatic flow (flow-alternating inversion-recovery lymphatic water labeling, 3 × 3 × 5 mm) in healthy subjects (n = 6; mean age, 30 years ± 1 [standard deviation]; recruitment duration, 2 months). Lymphatic flow velocity was quantified by performing spin labeling measurements as a function of postlabeling delay time and by measuring time to peak signal intensity in axillary lymph nodes. Clinical feasibility was evaluated in patients with stage II lymphedema (three women; age range, 43–64 years) and in control subjects with unilateral cuff-induced lymphatic stenosis (one woman, two men; age range, 31–35 years). Results Mean T1 and T2 relaxation times of lymphatic fluid at 3.0 T were 3100 msec ± 160 (range, 2930–3210 msec; median, 3200 msec) and 610 msec ± 12 (range, 598–618 msec; median, 610 msec), respectively. Healthy lymphatic flow (afferent vessel to axillary node) velocity was 0.61 cm/min ± 0.13 (n = 6). A reduction (P \u3c .005) in lymphatic flow velocity in the affected arms of patients and the affected arms of healthy subjects with manipulated cuff-induced flow reduction was observed. The ratio of unaffected to affected axilla lymphatic velocity (1.24 ± 0.18) was significantly (P \u3c .005) higher than the left-to-right ratio in healthy subjects (0.91 ± 0.18). Conclusion This work provides a foundation for clinical investigations whereby lymphedema etiogenesis and therapies may be interrogated without exogenous agents and with clinically available imaging equipment

    Current and Future Trends in Magnetic Resonance Imaging Assessments of the Response of Breast Tumors to Neoadjuvant Chemotherapy

    Get PDF
    The current state-of-the-art assessment of treatment response in breast cancer is based on the response evaluation criteria in solid tumors (RECIST). RECIST reports on changes in gross morphology and divides response into one of four categories. In this paper we highlight how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) may be able to offer earlier, and more precise, information on treatment response in the neoadjuvant setting than RECIST. We then describe how longitudinal registration of breast images and the incorporation of intelligent bioinformatics approaches with imaging data have the potential to increase the sensitivity of assessing treatment response. We conclude with a discussion of the potential benefits of breast MRI at the higher field strength of 3T. For each of these areas, we provide a review, illustrative examples from clinical trials, and offer insights into future research directions

    Methods for Fine Scale Functional Imaging of Tactile Motion in Human and Nonhuman Primates

    Get PDF
    In the visual and auditory systems specialized neural pathways use motion cues to track object motion and self-motion, and use differential motion cues for figure-ground segregation. To examine the neural circuits that encode motion in the somatosensory system, we have developed neuroimaging methods to study motion processing in human and nonhuman primates. We have implemented stimulus presentation paradigms to examine neural encoding of apparent motion percepts. These paradigms are designed to be compatible with fMRI, optical imaging, and electrophysiological methods, thereby permitting direct comparison of data derived across neurofunctional scales. An additional motivation for using a common tactile motion stimulation paradigm is to bridge two disparate bodies of work, that derived from neuroimaging studies in humans and another from neuroimaging, neurophysiological and neuroanatomical studies in monkeys. Here, we demonstrate that such an approach through the use of optical imaging and 9.4 Tesla fMRI experiments in monkeys, and 7 Tesla fMRI experiments in humans is effective in revealing neural regions activated by tactile motion stimuli. These methods span spatial scales capable of detecting 100 μm sized domains to those that would reveal global whole brain circuits. Armed with such capabilities, our long-term goals are to identify directionally selective areas and directionally se-lective functional domains and understand the global pathways within which they reside. Such knowledge would have great impact on our thinking regarding not only tactile motion processing, but also general strategies underlying somatosensory cortical processing
    corecore