721 research outputs found

    General variational approach to nuclear-quadrupole coupling in rovibrational spectra of polyatomic molecules

    Full text link
    A general algorithm for computing the quadrupole-hyperfine effects in the rovibrational spectra of polyatomic molecules is presented for the case of ammonia (NH3_3). The method extends the general variational approach TROVE by adding the extra term in the Hamiltonian that describes the nuclear quadrupole coupling, with no inherent limitation on the number of quadrupolar nuclei in a molecule. We applied the new approach to compute the nitrogen-nuclear-quadrupole hyperfine structure in the rovibrational spectrum of NH3_3. These results agree very well with recent experimental spectroscopic data for the pure rotational transitions in the ground vibrational and ν2\nu_2 states, and the rovibrational transitions in the ν1\nu_1, ν3\nu_3, 2ν42\nu_4, and ν1+ν3\nu_1+\nu_3 bands. The computed hyperfine-resolved rovibrational spectrum of ammonia will be beneficial for the assignment of experimental rovibrational spectra, further detection of ammonia in interstellar space, and studies of the proton-to-electron mass variation

    29Si Hyperfine Structure of the E'_\alpha Center in Amorphous Silicon Dioxide

    Full text link
    We report a study by electron paramagnetic resonance (EPR) on the E'_\alpha point defect in amorphous silicon dioxide (a-SiO2). Our experiments were performed on gamma-ray irradiated oxygen-deficient materials and pointed out that the 29Si hyperfine structure of the E'_alpha consists in a pair of lines split by 49 mT. On the basis of the experimental results a microscopic model is proposed for the E'_alpha center, consisting in a hole trapped in an oxygen vacancy with the unpaired electron sp3 orbital pointing away from the vacancy in a back-projected configuration and interacting with an extra oxygen atom of the a-SiO2 matrix.Comment: 4 page

    Hydrogen-addition radicals formed in the aromatic rings of amino acids, polyamino acids, and proteins.

    Full text link

    FREE RADICALS FORMED BY HYDROGEN ATOM BOMBARDMENT OF THE NUCLEIC-ACID BASES

    Full text link

    A note on Turán type and mean inequalities for the Kummer function

    Get PDF
    AbstractTurán-type inequalities for combinations of Kummer functions involving Φ(a±ν,c±ν,x) and Φ(a,c±ν,x) have been recently investigated in [Á. Baricz, Functional inequalities involving Bessel and modified Bessel functions of the first kind, Expo. Math. 26 (3) (2008) 279–293; M.E.H. Ismail, A. Laforgia, Monotonicity properties of determinants of special functions, Constr. Approx. 26 (2007) 1–9]. In the current paper, we resolve the corresponding Turán-type and closely related mean inequalities for the additional case involving Φ(a±ν,c,x). The application to modeling credit risk is also summarized

    Opto-Electrical Cooling of Polar Molecules

    Full text link
    We present an opto-electrical cooling scheme for polar molecules based on a Sisyphus-type cooling cycle in suitably tailored electric trapping fields. Dissipation is provided by spontaneous vibrational decay in a closed level scheme found in symmetric-top rotors comprising six low-field-seeking rovibrational states. A generic trap design is presented. Suitable molecules are identified with vibrational decay rates on the order of 100Hz. A simulation of the cooling process shows that the molecular temperature can be reduced from 1K to 1mK in approximately 10s. The molecules remain electrically trapped during this time, indicating that the ultracold regime can be reached in an experimentally feasible scheme

    Matrix algorithm for solving Schroedinger equations with position-dependent mass or complex optical potentials

    Full text link
    We represent low dimensional quantum mechanical Hamiltonians by moderately sized finite matrices that reproduce the lowest O(10) boundstate energies and wave functions to machine precision. The method extends also to Hamiltonians that are neither Hermitian nor PT symmetric and thus allows to investigate whether or not the spectra in such cases are still real. Furthermore, the approach is especially useful for problems in which a position-dependent mass is adopted, for example in effective-mass models in solid-state physics or in the approximate treatment of coupled nuclear motion in molecular physics or quantum chemistry. The performance of the algorithm is demonstrated by considering the inversion motion of different isotopes of ammonia molecules within a position-dependent-mass model and some other examples of one- and two-dimensional Hamiltonians that allow for the comparison to analytical or numerical results in the literature.Comment: 10 pages, 5 figures. Several clarifications in the text and new sect. IV.G. Version to appear in Phys. Rev.

    Improved spatial separation of neutral molecules

    Full text link
    We have developed and experimentally demonstrated an improved electrostatic deflector for the spatial separation of molecules according to their dipole-moment-to-mass ratio. The device features a very open structure that allows for significantly stronger electric fields as well as for stronger deflection without molecules crashing into the device itself. We have demonstrated its performance using the prototypical OCS molecule and we discuss opportunities regarding improved quantum-state-selectivity for complex molecules and the deflection of unpolar molecules.Comment: 6 figure

    On Quantum State Observability and Measurement

    Full text link
    We consider the problem of determining the state of a quantum system given one or more readings of the expectation value of an observable. The system is assumed to be a finite dimensional quantum control system for which we can influence the dynamics by generating all the unitary evolutions in a Lie group. We investigate to what extent, by an appropriate sequence of evolutions and measurements, we can obtain information on the initial state of the system. We present a system theoretic viewpoint of this problem in that we study the {\it observability} of the system. In this context, we characterize the equivalence classes of indistinguishable states and propose algorithms for state identification
    corecore