2,398 research outputs found

    The Nuclear Imaging Uncertainty Principle. Do Nuclear Cameras Really Work?

    Get PDF
    The introduction of the Heisenberg Uncertainty principle and Nuclear Cardiology occurred simultaneously in 1925-1927. Thirty years later the Anger gamma camera would allow for a more sophisticated radioactive isotope counting to determine the presence or absence of disease. When employed with technetium-99m isotopes, ischemic heart disease can be inferred by differences in visual appearance of cardiac images. These gestalts of imaging results have been separated from the quantitative information recorded by the cameras computer. We investigated whether current camera and computer systems are sophisticated enough to quantify differences between images to be clinically relevant. Our study demonstrated that efforts to "sharpen" image appearance does so at a reduction in "accuracy". Like Heisenberg, this work shows that one cannot know the exact location AND the amount of activity simultaneously and that a decision must be made for accuracy over image sharpness if one is to truly quantify differences in isotope concentration between images

    Cardiopulmonary Inflammatory Response to Meteorite Dust Exposures - Implications for Human Health on Earth and Beyond

    Get PDF
    This year marks the 50th anniversary of Apollo 11, the first time humans set foot on the Moon. The Apollo missions not only help answer questions related to our solar system, they also highlight many hazards associated with human space travel. One major concern is the effect of extraterrestrial dust on astronaut health. In an effort to expand upon previous work indicating lunar dust is respirable and reactive, the authors initiated an extensive study evaluating the role of a particulates innate geochemical features (e.g., bulk chemistry, internal composition, morphology, size, and reactivity) in generating adverse toxicological responses in vitro and in vivo. To allow for a broader planetary and geochemical assessment, seven samples were evaluated: six meteorites from either the Moon, Mars, or Asteroid 4 Vesta and a terrestrial basalt analogue. Even with the relatively small geochemical differences (all samples basaltic in nature), significant difference in cardiopulmonary inflammatory markers developed in both single exposure and multiple exposure studies. More specifically: 1) the single exposure studies reveal relationships between toxicity and a meteorite samples origin, its pre-ejected state (weathered versus un-weathered), and geochemical features (e.g. bulk iron content) and 2) multiple exposure studies reveal a correlation with particle derived reactive oxygen species (ROS) formation and neutrophil infiltration. Extended human exploration will further increase the probability of inadvertent and repeated exposures to extraterrestrial dusts. This comprehensive dataset allows for not only the toxicological evaluation of extraterrestrial materials but also clarifies important correlations between geochemistry and health. The utilization of an array of extraterrestrial samples from Moon, Mars, and asteroid 4Vesta will enable the development of a geochemical based toxicological hazard model that can be used for: 1) mission planning, 2) rapid risk assessment in cases of unexpected exposures, and 3) evaluation of the efficacy of various in situ techniques in gauging surface dust toxicity. Furthermore, by better understanding the importance of geochemical features on exposure related health outcomes in space, it is possible to better understand of the deleterious nature of dust exposure on Earth

    Liquid State Anomalies for the Stell-Hemmer Core-Softened Potential

    Full text link
    We study the Stell-Hemmer potential using both analytic (exact 1d1d and approximate 2d2d) solutions and numerical 2d2d simulations. We observe in the liquid phase an anomalous decrease in specific volume and isothermal compressibility upon heating, and an anomalous increase in the diffusion coefficient with pressure. We relate the anomalies to the existence of two different local structures in the liquid phase. Our results are consistent with the possibility of a low temperature/high pressure liquid-liquid phase transition.Comment: 4 pages in one gzipped ps file including 11 figures; One RevTex and 11 gzipped eps figure

    Water-like anomalies for core-softened models of fluids: One dimension

    Full text link
    We use a one-dimensional (1d) core-softened potential to develop a physical picture for some of the anomalies present in liquid water. The core-softened potential mimics the effect of hydrogen bonding. The interest in the 1d system stems from the facts that closed-form results are possible and that the qualitative behavior in 1d is reproduced in the liquid phase for higher dimensions. We discuss the relation between the shape of the potential and the density anomaly, and we study the entropy anomaly resulting from the density anomaly. We find that certain forms of the two-step square well potential lead to the existence at T=0 of a low-density phase favored at low pressures and of a high-density phase favored at high pressures, and to the appearance of a point CC' at a positive pressure, which is the analog of the T=0 ``critical point'' in the 1d1d Ising model. The existence of point CC' leads to anomalous behavior of the isothermal compressibility KTK_T and the isobaric specific heat CPC_P.Comment: 22 pages, 7 figure

    Pulmonary Inflammatory Responses to Acute Meteorite Dust Exposures - to Acute Meteorite Dust Exposures - Exploration

    Get PDF
    New initiatives to begin lunar and martian colonization within the next few decades are illustrative of the resurgence of interest in space travel. One of NASA's major concerns with extended human space exploration is the inadvertent and repeated exposure to unknown dust. This highly interdisciplinary study evaluates both the geochemical reactivity (e.g. iron solubility and acellular reactive oxygen species (ROS) generation) and the relative toxicity (e.g. in vitro and in vivo pulmonary inflammation) of six meteorite samples representing either basalt or regolith breccia on the surface of the Moon, Mars, and Asteroid 4Vesta. Terrestrial mid-ocean ridge basalt (MORB) is also used for comparison. The MORB demonstrated higher geochemical reactivity than most of the meteorite samples but caused the lowest acute pulmonary inflammation (API). Notably, the two martian meteorites generated some of the highest API but only the basaltic sample is significantly reactive geochemically. Furthermore, while there is a correlation between a meteorite's soluble iron content and its ability to generate acellular ROS, there is no direct correlation between a particle's ability to generate ROS acellularly and its ability to generate API. However, assorted in vivo API markers did demonstrate strong positive correlations with increasing bulk Fenton metal content. In summary, this comprehensive dataset allows for not only the toxicological evaluation of astromaterials but also clarifies important correlations between geochemistry and health
    corecore